Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for official.nlp.data.create_xlnet_pretraining_data.""" | |
import os | |
import tempfile | |
from typing import List | |
from absl import logging | |
from absl.testing import parameterized | |
import numpy as np | |
import tensorflow as tf, tf_keras | |
from official.nlp.data import create_xlnet_pretraining_data as cpd | |
_VOCAB_WORDS = ["vocab_1", "vocab_2"] | |
# pylint: disable=invalid-name | |
def _create_files( | |
temp_dir: str, file_contents: List[List[str]]) -> List[str]: | |
"""Writes arbitrary documents into files.""" | |
root_dir = tempfile.mkdtemp(dir=temp_dir) | |
files = [] | |
for i, file_content in enumerate(file_contents): | |
destination = os.path.join(root_dir, "%d.txt" % i) | |
with open(destination, "wb") as f: | |
for line in file_content: | |
f.write(line.encode("utf-8")) | |
files.append(destination) | |
return files | |
def _get_mock_tokenizer(): | |
"""Creates a mock tokenizer.""" | |
class MockSpieceModel: | |
"""Mock Spiece model for testing.""" | |
def __init__(self): | |
self._special_piece_to_id = { | |
"<unk>": 0, | |
} | |
for piece in set(list('!"#$%&\"()*+,-./:;?@[\\]^_`{|}~')): | |
self._special_piece_to_id[piece] = 1 | |
def EncodeAsPieces(self, inputs: str) -> List[str]: | |
return inputs | |
def SampleEncodeAsPieces(self, | |
inputs: str, | |
nbest_size: int, | |
theta: float) -> List[str]: | |
del nbest_size, theta | |
return inputs | |
def PieceToId(self, piece: str) -> int: | |
return ord(piece[0]) | |
def IdToPiece(self, id_: int) -> str: | |
return chr(id_) * 3 | |
class Tokenizer: | |
"""Mock Tokenizer for testing.""" | |
def __init__(self): | |
self.sp_model = MockSpieceModel() | |
def convert_ids_to_tokens(self, ids: List[int]) -> List[str]: | |
return [self.sp_model.IdToPiece(id_) for id_ in ids] | |
return Tokenizer() | |
class PreprocessDataTest(tf.test.TestCase): | |
def test_remove_extraneous_space(self): | |
line = " abc " | |
output = cpd._preprocess_line(line) | |
self.assertEqual(output, "abc") | |
def test_symbol_replacements(self): | |
self.assertEqual(cpd._preprocess_line("``abc``"), "\"abc\"") | |
self.assertEqual(cpd._preprocess_line("''abc''"), "\"abc\"") | |
def test_accent_replacements(self): | |
self.assertEqual(cpd._preprocess_line("åbc"), "abc") | |
def test_lower_case(self): | |
self.assertEqual(cpd._preprocess_line("ABC", do_lower_case=True), "abc") | |
def test_end_to_end(self): | |
self.assertEqual( | |
cpd._preprocess_line("HelLo ``wórLd``", do_lower_case=True), | |
"hello \"world\"") | |
class PreprocessAndTokenizeFilesTest(tf.test.TestCase): | |
def test_basic_end_to_end(self): | |
documents = [ | |
[ | |
"This is sentence 1.\n", | |
"This is sentence 2.\n", | |
"Sentence 3 is what this is.\n", | |
], | |
[ | |
"This is the second document.\n", | |
"This is the second line of the second document.\n" | |
], | |
] | |
input_files = _create_files(temp_dir=self.get_temp_dir(), | |
file_contents=documents) | |
all_data = cpd.preprocess_and_tokenize_input_files( | |
input_files=input_files, | |
tokenizer=_get_mock_tokenizer(), | |
log_example_freq=1) | |
self.assertEqual(len(all_data), len(documents)) | |
for token_ids, sentence_ids in all_data: | |
self.assertEqual(len(token_ids), len(sentence_ids)) | |
def test_basic_correctness(self): | |
documents = [["a\n", "b\n", "c\n"]] | |
input_files = _create_files(temp_dir=self.get_temp_dir(), | |
file_contents=documents) | |
all_data = cpd.preprocess_and_tokenize_input_files( | |
input_files=input_files, | |
tokenizer=_get_mock_tokenizer(), | |
log_example_freq=1) | |
token_ids, sentence_ids = all_data[0] | |
self.assertAllClose(token_ids, [97, 98, 99]) | |
self.assertAllClose(sentence_ids, [True, False, True]) | |
def test_correctness_with_spaces_and_accents(self): | |
documents = [[ | |
" å \n", | |
"b \n", | |
" c \n", | |
]] | |
input_files = _create_files(temp_dir=self.get_temp_dir(), | |
file_contents=documents) | |
all_data = cpd.preprocess_and_tokenize_input_files( | |
input_files=input_files, | |
tokenizer=_get_mock_tokenizer(), | |
log_example_freq=1) | |
token_ids, sentence_ids = all_data[0] | |
self.assertAllClose(token_ids, [97, 98, 99]) | |
self.assertAllClose(sentence_ids, [True, False, True]) | |
class BatchReshapeTests(tf.test.TestCase): | |
def test_basic_functionality(self): | |
per_host_batch_size = 3 | |
mock_shape = (20,) | |
# Should truncate and reshape. | |
expected_result_shape = (3, 6) | |
tokens = np.zeros(mock_shape) | |
sentence_ids = np.zeros(mock_shape) | |
reshaped_data = cpd._reshape_to_batch_dimensions( | |
tokens=tokens, | |
sentence_ids=sentence_ids, | |
per_host_batch_size=per_host_batch_size) | |
for values in reshaped_data: | |
self.assertEqual(len(values.flatten()) % per_host_batch_size, 0) | |
self.assertAllClose(values.shape, expected_result_shape) | |
class CreateSegmentsTest(tf.test.TestCase): | |
def test_basic_functionality(self): | |
data_length = 10 | |
tokens = np.arange(data_length) | |
sentence_ids = np.concatenate([np.zeros(data_length // 2), | |
np.ones(data_length // 2)]) | |
begin_index = 0 | |
total_length = 8 | |
a_data, b_data, label = cpd._create_a_and_b_segments( | |
tokens=tokens, | |
sentence_ids=sentence_ids, | |
begin_index=begin_index, | |
total_length=total_length, | |
no_cut_probability=0.) | |
self.assertAllClose(a_data, [0, 1, 2, 3]) | |
self.assertAllClose(b_data, [5, 6, 7, 8]) | |
self.assertEqual(label, 1) | |
def test_no_cut(self): | |
data_length = 10 | |
tokens = np.arange(data_length) | |
sentence_ids = np.zeros(data_length) | |
begin_index = 0 | |
total_length = 8 | |
a_data, b_data, label = cpd._create_a_and_b_segments( | |
tokens=tokens, | |
sentence_ids=sentence_ids, | |
begin_index=begin_index, | |
total_length=total_length, | |
no_cut_probability=0.) | |
self.assertGreater(len(a_data), 0) | |
self.assertGreater(len(b_data), 0) | |
self.assertEqual(label, 0) | |
def test_no_cut_with_probability(self): | |
data_length = 10 | |
tokens = np.arange(data_length) | |
sentence_ids = np.concatenate([np.zeros(data_length // 2), | |
np.ones(data_length // 2)]) | |
begin_index = 0 | |
total_length = 8 | |
a_data, b_data, label = cpd._create_a_and_b_segments( | |
tokens=tokens, | |
sentence_ids=sentence_ids, | |
begin_index=begin_index, | |
total_length=total_length, | |
no_cut_probability=1.) | |
self.assertGreater(len(a_data), 0) | |
self.assertGreater(len(b_data), 0) | |
self.assertEqual(label, 0) | |
class CreateInstancesTest(tf.test.TestCase): | |
"""Tests conversions of Token/Sentence IDs to training instances.""" | |
def test_basic(self): | |
data_length = 12 | |
tokens = np.arange(data_length) | |
sentence_ids = np.zeros(data_length) | |
seq_length = 8 | |
instances = cpd._convert_tokens_to_instances( | |
tokens=tokens, | |
sentence_ids=sentence_ids, | |
per_host_batch_size=2, | |
seq_length=seq_length, | |
reuse_length=4, | |
tokenizer=_get_mock_tokenizer(), | |
bi_data=False, | |
num_cores_per_host=1, | |
logging_frequency=1) | |
for instance in instances: | |
self.assertEqual(len(instance.data), seq_length) | |
self.assertEqual(len(instance.segment_ids), seq_length) | |
self.assertIsInstance(instance.label, int) | |
self.assertIsInstance(instance.boundary_indices, list) | |
class TFRecordPathTests(tf.test.TestCase): | |
def test_basic(self): | |
base_kwargs = dict( | |
per_host_batch_size=1, | |
num_cores_per_host=1, | |
seq_length=2, | |
reuse_length=1) | |
config1 = dict( | |
prefix="test", | |
suffix="", | |
bi_data=True, | |
use_eod_token=False, | |
do_lower_case=True) | |
config1.update(base_kwargs) | |
expectation1 = "test_seqlen-2_reuse-1_bs-1_cores-1_uncased_bi.tfrecord" | |
self.assertEqual(cpd.get_tfrecord_name(**config1), expectation1) | |
config2 = dict( | |
prefix="", | |
suffix="test", | |
bi_data=False, | |
use_eod_token=False, | |
do_lower_case=False) | |
config2.update(base_kwargs) | |
expectation2 = "seqlen-2_reuse-1_bs-1_cores-1_cased_uni_test.tfrecord" | |
self.assertEqual(cpd.get_tfrecord_name(**config2), expectation2) | |
config3 = dict( | |
prefix="", | |
suffix="", | |
use_eod_token=True, | |
bi_data=False, | |
do_lower_case=True) | |
config3.update(base_kwargs) | |
expectation3 = "seqlen-2_reuse-1_bs-1_cores-1_uncased_eod_uni.tfrecord" | |
self.assertEqual(cpd.get_tfrecord_name(**config3), expectation3) | |
class TestCreateTFRecords(parameterized.TestCase, tf.test.TestCase): | |
def test_end_to_end(self, | |
bi_data: bool, | |
use_eod_token: bool, | |
do_lower_case: bool): | |
tokenizer = _get_mock_tokenizer() | |
num_documents = 5 | |
sentences_per_document = 10 | |
document_length = 50 | |
documents = [ | |
["a " * document_length for _ in range(sentences_per_document)] | |
for _ in range(num_documents)] | |
save_dir = tempfile.mkdtemp(dir=self.get_temp_dir()) | |
files = _create_files(temp_dir=self.get_temp_dir(), file_contents=documents) | |
cpd.create_tfrecords( | |
tokenizer=tokenizer, | |
input_file_or_files=",".join(files), | |
use_eod_token=use_eod_token, | |
do_lower_case=do_lower_case, | |
per_host_batch_size=8, | |
seq_length=8, | |
reuse_length=4, | |
bi_data=bi_data, | |
num_cores_per_host=2, | |
save_dir=save_dir) | |
self.assertTrue(any(filter(lambda x: x.endswith(".json"), | |
os.listdir(save_dir)))) | |
self.assertTrue(any(filter(lambda x: x.endswith(".tfrecord"), | |
os.listdir(save_dir)))) | |
if __name__ == "__main__": | |
np.random.seed(0) | |
logging.set_verbosity(logging.INFO) | |
tf.test.main() | |