ASL-MoViNet-T5-translator / official /nlp /data /create_xlnet_pretraining_data_test.py
deanna-emery's picture
updates
93528c6
raw
history blame
10.9 kB
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for official.nlp.data.create_xlnet_pretraining_data."""
import os
import tempfile
from typing import List
from absl import logging
from absl.testing import parameterized
import numpy as np
import tensorflow as tf, tf_keras
from official.nlp.data import create_xlnet_pretraining_data as cpd
_VOCAB_WORDS = ["vocab_1", "vocab_2"]
# pylint: disable=invalid-name
def _create_files(
temp_dir: str, file_contents: List[List[str]]) -> List[str]:
"""Writes arbitrary documents into files."""
root_dir = tempfile.mkdtemp(dir=temp_dir)
files = []
for i, file_content in enumerate(file_contents):
destination = os.path.join(root_dir, "%d.txt" % i)
with open(destination, "wb") as f:
for line in file_content:
f.write(line.encode("utf-8"))
files.append(destination)
return files
def _get_mock_tokenizer():
"""Creates a mock tokenizer."""
class MockSpieceModel:
"""Mock Spiece model for testing."""
def __init__(self):
self._special_piece_to_id = {
"<unk>": 0,
}
for piece in set(list('!"#$%&\"()*+,-./:;?@[\\]^_`{|}~')):
self._special_piece_to_id[piece] = 1
def EncodeAsPieces(self, inputs: str) -> List[str]:
return inputs
def SampleEncodeAsPieces(self,
inputs: str,
nbest_size: int,
theta: float) -> List[str]:
del nbest_size, theta
return inputs
def PieceToId(self, piece: str) -> int:
return ord(piece[0])
def IdToPiece(self, id_: int) -> str:
return chr(id_) * 3
class Tokenizer:
"""Mock Tokenizer for testing."""
def __init__(self):
self.sp_model = MockSpieceModel()
def convert_ids_to_tokens(self, ids: List[int]) -> List[str]:
return [self.sp_model.IdToPiece(id_) for id_ in ids]
return Tokenizer()
class PreprocessDataTest(tf.test.TestCase):
def test_remove_extraneous_space(self):
line = " abc "
output = cpd._preprocess_line(line)
self.assertEqual(output, "abc")
def test_symbol_replacements(self):
self.assertEqual(cpd._preprocess_line("``abc``"), "\"abc\"")
self.assertEqual(cpd._preprocess_line("''abc''"), "\"abc\"")
def test_accent_replacements(self):
self.assertEqual(cpd._preprocess_line("åbc"), "abc")
def test_lower_case(self):
self.assertEqual(cpd._preprocess_line("ABC", do_lower_case=True), "abc")
def test_end_to_end(self):
self.assertEqual(
cpd._preprocess_line("HelLo ``wórLd``", do_lower_case=True),
"hello \"world\"")
class PreprocessAndTokenizeFilesTest(tf.test.TestCase):
def test_basic_end_to_end(self):
documents = [
[
"This is sentence 1.\n",
"This is sentence 2.\n",
"Sentence 3 is what this is.\n",
],
[
"This is the second document.\n",
"This is the second line of the second document.\n"
],
]
input_files = _create_files(temp_dir=self.get_temp_dir(),
file_contents=documents)
all_data = cpd.preprocess_and_tokenize_input_files(
input_files=input_files,
tokenizer=_get_mock_tokenizer(),
log_example_freq=1)
self.assertEqual(len(all_data), len(documents))
for token_ids, sentence_ids in all_data:
self.assertEqual(len(token_ids), len(sentence_ids))
def test_basic_correctness(self):
documents = [["a\n", "b\n", "c\n"]]
input_files = _create_files(temp_dir=self.get_temp_dir(),
file_contents=documents)
all_data = cpd.preprocess_and_tokenize_input_files(
input_files=input_files,
tokenizer=_get_mock_tokenizer(),
log_example_freq=1)
token_ids, sentence_ids = all_data[0]
self.assertAllClose(token_ids, [97, 98, 99])
self.assertAllClose(sentence_ids, [True, False, True])
def test_correctness_with_spaces_and_accents(self):
documents = [[
" å \n",
"b \n",
" c \n",
]]
input_files = _create_files(temp_dir=self.get_temp_dir(),
file_contents=documents)
all_data = cpd.preprocess_and_tokenize_input_files(
input_files=input_files,
tokenizer=_get_mock_tokenizer(),
log_example_freq=1)
token_ids, sentence_ids = all_data[0]
self.assertAllClose(token_ids, [97, 98, 99])
self.assertAllClose(sentence_ids, [True, False, True])
class BatchReshapeTests(tf.test.TestCase):
def test_basic_functionality(self):
per_host_batch_size = 3
mock_shape = (20,)
# Should truncate and reshape.
expected_result_shape = (3, 6)
tokens = np.zeros(mock_shape)
sentence_ids = np.zeros(mock_shape)
reshaped_data = cpd._reshape_to_batch_dimensions(
tokens=tokens,
sentence_ids=sentence_ids,
per_host_batch_size=per_host_batch_size)
for values in reshaped_data:
self.assertEqual(len(values.flatten()) % per_host_batch_size, 0)
self.assertAllClose(values.shape, expected_result_shape)
class CreateSegmentsTest(tf.test.TestCase):
def test_basic_functionality(self):
data_length = 10
tokens = np.arange(data_length)
sentence_ids = np.concatenate([np.zeros(data_length // 2),
np.ones(data_length // 2)])
begin_index = 0
total_length = 8
a_data, b_data, label = cpd._create_a_and_b_segments(
tokens=tokens,
sentence_ids=sentence_ids,
begin_index=begin_index,
total_length=total_length,
no_cut_probability=0.)
self.assertAllClose(a_data, [0, 1, 2, 3])
self.assertAllClose(b_data, [5, 6, 7, 8])
self.assertEqual(label, 1)
def test_no_cut(self):
data_length = 10
tokens = np.arange(data_length)
sentence_ids = np.zeros(data_length)
begin_index = 0
total_length = 8
a_data, b_data, label = cpd._create_a_and_b_segments(
tokens=tokens,
sentence_ids=sentence_ids,
begin_index=begin_index,
total_length=total_length,
no_cut_probability=0.)
self.assertGreater(len(a_data), 0)
self.assertGreater(len(b_data), 0)
self.assertEqual(label, 0)
def test_no_cut_with_probability(self):
data_length = 10
tokens = np.arange(data_length)
sentence_ids = np.concatenate([np.zeros(data_length // 2),
np.ones(data_length // 2)])
begin_index = 0
total_length = 8
a_data, b_data, label = cpd._create_a_and_b_segments(
tokens=tokens,
sentence_ids=sentence_ids,
begin_index=begin_index,
total_length=total_length,
no_cut_probability=1.)
self.assertGreater(len(a_data), 0)
self.assertGreater(len(b_data), 0)
self.assertEqual(label, 0)
class CreateInstancesTest(tf.test.TestCase):
"""Tests conversions of Token/Sentence IDs to training instances."""
def test_basic(self):
data_length = 12
tokens = np.arange(data_length)
sentence_ids = np.zeros(data_length)
seq_length = 8
instances = cpd._convert_tokens_to_instances(
tokens=tokens,
sentence_ids=sentence_ids,
per_host_batch_size=2,
seq_length=seq_length,
reuse_length=4,
tokenizer=_get_mock_tokenizer(),
bi_data=False,
num_cores_per_host=1,
logging_frequency=1)
for instance in instances:
self.assertEqual(len(instance.data), seq_length)
self.assertEqual(len(instance.segment_ids), seq_length)
self.assertIsInstance(instance.label, int)
self.assertIsInstance(instance.boundary_indices, list)
class TFRecordPathTests(tf.test.TestCase):
def test_basic(self):
base_kwargs = dict(
per_host_batch_size=1,
num_cores_per_host=1,
seq_length=2,
reuse_length=1)
config1 = dict(
prefix="test",
suffix="",
bi_data=True,
use_eod_token=False,
do_lower_case=True)
config1.update(base_kwargs)
expectation1 = "test_seqlen-2_reuse-1_bs-1_cores-1_uncased_bi.tfrecord"
self.assertEqual(cpd.get_tfrecord_name(**config1), expectation1)
config2 = dict(
prefix="",
suffix="test",
bi_data=False,
use_eod_token=False,
do_lower_case=False)
config2.update(base_kwargs)
expectation2 = "seqlen-2_reuse-1_bs-1_cores-1_cased_uni_test.tfrecord"
self.assertEqual(cpd.get_tfrecord_name(**config2), expectation2)
config3 = dict(
prefix="",
suffix="",
use_eod_token=True,
bi_data=False,
do_lower_case=True)
config3.update(base_kwargs)
expectation3 = "seqlen-2_reuse-1_bs-1_cores-1_uncased_eod_uni.tfrecord"
self.assertEqual(cpd.get_tfrecord_name(**config3), expectation3)
class TestCreateTFRecords(parameterized.TestCase, tf.test.TestCase):
@parameterized.named_parameters(
("bi_data_only", True, False, False),
("eod_token_only", False, True, True),
("lower_case_only", False, False, True),
("all_enabled", True, True, True),
)
def test_end_to_end(self,
bi_data: bool,
use_eod_token: bool,
do_lower_case: bool):
tokenizer = _get_mock_tokenizer()
num_documents = 5
sentences_per_document = 10
document_length = 50
documents = [
["a " * document_length for _ in range(sentences_per_document)]
for _ in range(num_documents)]
save_dir = tempfile.mkdtemp(dir=self.get_temp_dir())
files = _create_files(temp_dir=self.get_temp_dir(), file_contents=documents)
cpd.create_tfrecords(
tokenizer=tokenizer,
input_file_or_files=",".join(files),
use_eod_token=use_eod_token,
do_lower_case=do_lower_case,
per_host_batch_size=8,
seq_length=8,
reuse_length=4,
bi_data=bi_data,
num_cores_per_host=2,
save_dir=save_dir)
self.assertTrue(any(filter(lambda x: x.endswith(".json"),
os.listdir(save_dir))))
self.assertTrue(any(filter(lambda x: x.endswith(".tfrecord"),
os.listdir(save_dir))))
if __name__ == "__main__":
np.random.seed(0)
logging.set_verbosity(logging.INFO)
tf.test.main()