ASL-MoViNet-T5-translator / official /nlp /data /question_answering_dataloader.py
deanna-emery's picture
updates
93528c6
raw
history blame
4.47 kB
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Loads dataset for the question answering (e.g, SQuAD) task."""
import dataclasses
from typing import Mapping, Optional
import tensorflow as tf, tf_keras
from official.common import dataset_fn
from official.core import config_definitions as cfg
from official.core import input_reader
from official.nlp.data import data_loader
from official.nlp.data import data_loader_factory
@dataclasses.dataclass
class QADataConfig(cfg.DataConfig):
"""Data config for question answering task (tasks/question_answering)."""
# For training, `input_path` is expected to be a pre-processed TFRecord file,
# while for evaluation, it is expected to be a raw JSON file (b/173814590).
input_path: str = ''
global_batch_size: int = 48
is_training: bool = True
seq_length: int = 384
# Settings below are question answering specific.
version_2_with_negative: bool = False
# Settings below are only used for eval mode.
input_preprocessed_data_path: str = ''
doc_stride: int = 128
query_length: int = 64
# The path to the vocab file of word piece tokenizer or the
# model of the sentence piece tokenizer.
vocab_file: str = ''
tokenization: str = 'WordPiece' # WordPiece or SentencePiece
do_lower_case: bool = True
xlnet_format: bool = False
file_type: str = 'tfrecord'
@data_loader_factory.register_data_loader_cls(QADataConfig)
class QuestionAnsweringDataLoader(data_loader.DataLoader):
"""A class to load dataset for sentence prediction (classification) task."""
def __init__(self, params):
self._params = params
self._seq_length = params.seq_length
self._is_training = params.is_training
self._xlnet_format = params.xlnet_format
def _decode(self, record: tf.Tensor):
"""Decodes a serialized tf.Example."""
name_to_features = {
'input_ids': tf.io.FixedLenFeature([self._seq_length], tf.int64),
'input_mask': tf.io.FixedLenFeature([self._seq_length], tf.int64),
'segment_ids': tf.io.FixedLenFeature([self._seq_length], tf.int64),
}
if self._xlnet_format:
name_to_features['class_index'] = tf.io.FixedLenFeature([], tf.int64)
name_to_features['paragraph_mask'] = tf.io.FixedLenFeature(
[self._seq_length], tf.int64)
if self._is_training:
name_to_features['is_impossible'] = tf.io.FixedLenFeature([], tf.int64)
if self._is_training:
name_to_features['start_positions'] = tf.io.FixedLenFeature([], tf.int64)
name_to_features['end_positions'] = tf.io.FixedLenFeature([], tf.int64)
else:
name_to_features['unique_ids'] = tf.io.FixedLenFeature([], tf.int64)
example = tf.io.parse_single_example(record, name_to_features)
# tf.Example only supports tf.int64, but the TPU only supports tf.int32.
# So cast all int64 to int32.
for name in example:
t = example[name]
if t.dtype == tf.int64:
t = tf.cast(t, tf.int32)
example[name] = t
return example
def _parse(self, record: Mapping[str, tf.Tensor]):
"""Parses raw tensors into a dict of tensors to be consumed by the model."""
x, y = {}, {}
for name, tensor in record.items():
if name in ('start_positions', 'end_positions', 'is_impossible'):
y[name] = tensor
elif name == 'input_ids':
x['input_word_ids'] = tensor
elif name == 'segment_ids':
x['input_type_ids'] = tensor
else:
x[name] = tensor
if name == 'start_positions' and self._xlnet_format:
x[name] = tensor
return (x, y)
def load(self, input_context: Optional[tf.distribute.InputContext] = None):
"""Returns a tf.dataset.Dataset."""
reader = input_reader.InputReader(
params=self._params,
dataset_fn=dataset_fn.pick_dataset_fn(self._params.file_type),
decoder_fn=self._decode,
parser_fn=self._parse)
return reader.read(input_context)