Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""A factorized embedding layer.""" | |
# pylint: disable=g-classes-have-attributes | |
import tensorflow as tf, tf_keras | |
from official.modeling import tf_utils | |
from official.nlp.modeling.layers import on_device_embedding | |
class FactorizedEmbedding(on_device_embedding.OnDeviceEmbedding): | |
"""A factorized embeddings layer for supporting larger embeddings. | |
Arguments: | |
vocab_size: Number of elements in the vocabulary. | |
embedding_width: Width of word embeddings. | |
output_dim: The output dimension of this layer. | |
initializer: The initializer to use for the embedding weights. Defaults to | |
"glorot_uniform". | |
use_one_hot: Whether to use tf.one_hot over tf.gather for the embedding | |
lookup. Defaults to False (that is, using tf.gather). Setting this option | |
to True may improve performance, especially on small vocabulary sizes, but | |
will generally require more memory. | |
scale_factor: Whether to scale the output embeddings. Defaults to None (that | |
is, not to scale). Setting this option to a float will let values in | |
output embeddings multiplied by scale_factor. | |
""" | |
def __init__(self, | |
vocab_size: int, | |
embedding_width: int, | |
output_dim: int, | |
initializer='glorot_uniform', | |
use_one_hot=False, | |
scale_factor=None, | |
**kwargs): | |
super().__init__( | |
vocab_size=vocab_size, | |
embedding_width=embedding_width, | |
initializer=initializer, | |
use_one_hot=use_one_hot, | |
scale_factor=scale_factor, | |
**kwargs) | |
self._output_dim = output_dim | |
def get_config(self): | |
config = {'output_dim': self._output_dim} | |
base_config = super().get_config() | |
return dict(list(base_config.items()) + list(config.items())) | |
def build(self, input_shape): | |
self._embedding_projection = tf_keras.layers.EinsumDense( | |
'...x,xy->...y', | |
output_shape=self._output_dim, | |
bias_axes=None, | |
kernel_initializer=tf_utils.clone_initializer(self._initializer), | |
name='embedding_projection') | |
super().build(input_shape) | |
def call(self, inputs): | |
output = super().call(inputs) | |
return self._embedding_projection(output) | |