Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for projects.nhnet.multi_channel_attention.""" | |
import numpy as np | |
import tensorflow as tf, tf_keras | |
from official.nlp.modeling.layers import multi_channel_attention | |
class MultiChannelAttentionTest(tf.test.TestCase): | |
def test_doc_attention(self): | |
num_heads = 2 | |
doc_attention = multi_channel_attention.VotingAttention( | |
num_heads, head_size=8) | |
num_docs = 3 | |
inputs = np.zeros((2, num_docs, 10, 16), dtype=np.float32) | |
doc_mask = np.zeros((2, num_docs), dtype=np.float32) | |
outputs = doc_attention(inputs, doc_mask) | |
self.assertEqual(outputs.shape, (2, num_docs)) | |
def test_multi_channel_attention(self): | |
num_heads = 2 | |
num_docs = 5 | |
attention_layer = multi_channel_attention.MultiChannelAttention( | |
num_heads, key_dim=2) | |
from_data = 10 * np.random.random_sample((3, 4, 8)) | |
to_data = 10 * np.random.random_sample((3, num_docs, 2, 8)) | |
mask_data = np.random.randint(2, size=(3, num_docs, 4, 2)) | |
doc_probs = np.random.randint( | |
2, size=(3, num_heads, 4, num_docs)).astype(float) | |
outputs = attention_layer( | |
query=from_data, | |
value=to_data, | |
context_attention_weights=doc_probs, | |
attention_mask=mask_data) | |
self.assertEqual(outputs.shape, (3, 4, 8)) | |
if __name__ == "__main__": | |
tf.test.main() | |