Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for Keras-based one-hot embedding layer.""" | |
import numpy as np | |
import tensorflow as tf, tf_keras | |
from official.nlp.modeling.layers import on_device_embedding | |
class OnDeviceEmbeddingTest(tf.test.TestCase): | |
def test_layer_creation(self): | |
vocab_size = 31 | |
embedding_width = 27 | |
test_layer = on_device_embedding.OnDeviceEmbedding( | |
vocab_size=vocab_size, embedding_width=embedding_width) | |
# Create a 2-dimensional input (the first dimension is implicit). | |
sequence_length = 23 | |
input_tensor = tf_keras.Input(shape=(sequence_length), dtype=tf.int32) | |
output_tensor = test_layer(input_tensor) | |
# The output should be the same as the input, save that it has an extra | |
# embedding_width dimension on the end. | |
expected_output_shape = [None, sequence_length, embedding_width] | |
self.assertEqual(expected_output_shape, output_tensor.shape.as_list()) | |
self.assertEqual(output_tensor.dtype, tf.float32) | |
def test_layer_creation_with_mixed_precision(self): | |
vocab_size = 31 | |
embedding_width = 27 | |
test_layer = on_device_embedding.OnDeviceEmbedding( | |
vocab_size=vocab_size, embedding_width=embedding_width, | |
dtype="mixed_float16") | |
# Create a 2-dimensional input (the first dimension is implicit). | |
sequence_length = 23 | |
input_tensor = tf_keras.Input(shape=(sequence_length), dtype=tf.int32) | |
output_tensor = test_layer(input_tensor) | |
# The output should be the same as the input, save that it has an extra | |
# embedding_width dimension on the end. | |
expected_output_shape = [None, sequence_length, embedding_width] | |
self.assertEqual(expected_output_shape, output_tensor.shape.as_list()) | |
self.assertEqual(output_tensor.dtype, tf.float16) | |
def test_layer_invocation(self): | |
vocab_size = 31 | |
embedding_width = 27 | |
test_layer = on_device_embedding.OnDeviceEmbedding( | |
vocab_size=vocab_size, embedding_width=embedding_width) | |
# Create a 2-dimensional input (the first dimension is implicit). | |
sequence_length = 23 | |
input_tensor = tf_keras.Input(shape=(sequence_length), dtype=tf.int32) | |
output_tensor = test_layer(input_tensor) | |
# Create a model from the test layer. | |
model = tf_keras.Model(input_tensor, output_tensor) | |
# Invoke the model on test data. We can't validate the output data itself | |
# (the NN is too complex) but this will rule out structural runtime errors. | |
batch_size = 3 | |
input_data = np.random.randint( | |
vocab_size, size=(batch_size, sequence_length)) | |
output = model.predict(input_data) | |
self.assertEqual(tf.float32, output.dtype) | |
def test_layer_invocation_with_mixed_precision(self): | |
vocab_size = 31 | |
embedding_width = 27 | |
test_layer = on_device_embedding.OnDeviceEmbedding( | |
vocab_size=vocab_size, embedding_width=embedding_width, | |
dtype="mixed_float16") | |
# Create a 2-dimensional input (the first dimension is implicit). | |
sequence_length = 23 | |
input_tensor = tf_keras.Input(shape=(sequence_length), dtype=tf.int32) | |
output_tensor = test_layer(input_tensor) | |
# Create a model from the test layer. | |
model = tf_keras.Model(input_tensor, output_tensor) | |
# Invoke the model on test data. We can't validate the output data itself | |
# (the NN is too complex) but this will rule out structural runtime errors. | |
batch_size = 3 | |
input_data = np.random.randint( | |
vocab_size, size=(batch_size, sequence_length)) | |
output = model.predict(input_data) | |
self.assertEqual(tf.float16, output.dtype) | |
def test_one_hot_layer_creation(self): | |
vocab_size = 31 | |
embedding_width = 27 | |
test_layer = on_device_embedding.OnDeviceEmbedding( | |
vocab_size=vocab_size, | |
embedding_width=embedding_width, | |
use_one_hot=True) | |
# Create a 2-dimensional input (the first dimension is implicit). | |
sequence_length = 23 | |
input_tensor = tf_keras.Input(shape=(sequence_length), dtype=tf.int32) | |
output_tensor = test_layer(input_tensor) | |
# The output should be the same as the input, save that it has an extra | |
# embedding_width dimension on the end. | |
expected_output_shape = [None, sequence_length, embedding_width] | |
self.assertEqual(expected_output_shape, output_tensor.shape.as_list()) | |
self.assertEqual(output_tensor.dtype, tf.float32) | |
def test_one_hot_layer_creation_with_mixed_precision(self): | |
vocab_size = 31 | |
embedding_width = 27 | |
test_layer = on_device_embedding.OnDeviceEmbedding( | |
vocab_size=vocab_size, | |
embedding_width=embedding_width, | |
dtype="mixed_float16", | |
use_one_hot=True) | |
# Create a 2-dimensional input (the first dimension is implicit). | |
sequence_length = 23 | |
input_tensor = tf_keras.Input(shape=(sequence_length), dtype=tf.int32) | |
output_tensor = test_layer(input_tensor) | |
# The output should be the same as the input, save that it has an extra | |
# embedding_width dimension on the end. | |
expected_output_shape = [None, sequence_length, embedding_width] | |
self.assertEqual(expected_output_shape, output_tensor.shape.as_list()) | |
self.assertEqual(output_tensor.dtype, tf.float16) | |
def test_one_hot_layer_invocation(self): | |
vocab_size = 31 | |
embedding_width = 27 | |
test_layer = on_device_embedding.OnDeviceEmbedding( | |
vocab_size=vocab_size, | |
embedding_width=embedding_width, | |
use_one_hot=True) | |
# Create a 2-dimensional input (the first dimension is implicit). | |
sequence_length = 23 | |
input_tensor = tf_keras.Input(shape=(sequence_length), dtype=tf.int32) | |
output_tensor = test_layer(input_tensor) | |
# Create a model from the test layer. | |
model = tf_keras.Model(input_tensor, output_tensor) | |
# Invoke the model on test data. We can't validate the output data itself | |
# (the NN is too complex) but this will rule out structural runtime errors. | |
batch_size = 3 | |
input_data = np.random.randint( | |
vocab_size, size=(batch_size, sequence_length)) | |
output = model.predict(input_data) | |
self.assertEqual(tf.float32, output.dtype) | |
def test_one_hot_layer_invocation_with_mixed_precision(self): | |
vocab_size = 31 | |
embedding_width = 27 | |
test_layer = on_device_embedding.OnDeviceEmbedding( | |
vocab_size=vocab_size, | |
embedding_width=embedding_width, | |
dtype="mixed_float16", | |
use_one_hot=True) | |
# Create a 2-dimensional input (the first dimension is implicit). | |
sequence_length = 23 | |
input_tensor = tf_keras.Input(shape=(sequence_length), dtype=tf.int32) | |
output_tensor = test_layer(input_tensor) | |
# Create a model from the test layer. | |
model = tf_keras.Model(input_tensor, output_tensor) | |
# Invoke the model on test data. We can't validate the output data itself | |
# (the NN is too complex) but this will rule out structural runtime errors. | |
batch_size = 3 | |
input_data = np.random.randint( | |
vocab_size, size=(batch_size, sequence_length)) | |
output = model.predict(input_data) | |
self.assertEqual(tf.float16, output.dtype) | |
def test_use_scale_layer_invocation(self): | |
vocab_size = 31 | |
embedding_width = 27 | |
test_layer = on_device_embedding.OnDeviceEmbedding( | |
vocab_size=vocab_size, embedding_width=embedding_width, | |
scale_factor=embedding_width**0.5) | |
# Create a 2-dimensional input (the first dimension is implicit). | |
sequence_length = 23 | |
input_tensor = tf_keras.Input(shape=(sequence_length), dtype=tf.int32) | |
output_tensor = test_layer(input_tensor) | |
# Create a model from the test layer. | |
model = tf_keras.Model(input_tensor, output_tensor) | |
# Invoke the model on test data. We can't validate the output data itself | |
# (the NN is too complex) but this will rule out structural runtime errors. | |
batch_size = 3 | |
input_data = np.random.randint( | |
vocab_size, size=(batch_size, sequence_length)) | |
output = model.predict(input_data) | |
self.assertEqual(tf.float32, output.dtype) | |
if __name__ == "__main__": | |
tf.test.main() | |