Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for Keras-based positional embedding layer.""" | |
from absl.testing import parameterized | |
import numpy as np | |
import tensorflow as tf, tf_keras | |
from official.nlp.modeling.layers import position_embedding | |
class PositionEmbeddingLayerTest(tf.test.TestCase): | |
def test_static_layer_output_shape(self): | |
# Create a 3-dimensional input (the first dimension is implicit). | |
sequence_length = 21 | |
test_layer = position_embedding.PositionEmbedding( | |
max_length=sequence_length) | |
width = 30 | |
input_tensor = tf_keras.Input(shape=(sequence_length, width)) | |
output_tensor = test_layer(input_tensor) | |
# When using static positional embedding shapes, the output is expected | |
# to be the same as the input shape in all dimensions save batch. | |
expected_output_shape = [None, sequence_length, width] | |
self.assertEqual(expected_output_shape, output_tensor.shape.as_list()) | |
# The default output dtype for this layer should be tf.float32. | |
self.assertEqual(tf.float32, output_tensor.dtype) | |
def test_non_default_axis_static(self): | |
# Create a 3-dimensional input (the first dimension is implicit). | |
sequence_length = 21 | |
test_layer = position_embedding.PositionEmbedding( | |
max_length=sequence_length, seq_axis=2) | |
width = 30 | |
input_tensor = tf_keras.Input(shape=(width, sequence_length, width)) | |
output_tensor = test_layer(input_tensor) | |
# When using static positional embedding shapes, the output is expected | |
# to be the same as the input shape in all dimensions save batch. | |
expected_output_shape = [None, width, sequence_length, width] | |
self.assertEqual(expected_output_shape, output_tensor.shape.as_list()) | |
# The default output dtype for this layer should be tf.float32. | |
self.assertEqual(tf.float32, output_tensor.dtype) | |
def test_float16_dtype(self): | |
# Create a 3-dimensional input (the first dimension is implicit). | |
sequence_length = 21 | |
test_layer = position_embedding.PositionEmbedding( | |
max_length=sequence_length, dtype="float16") | |
width = 30 | |
input_tensor = tf_keras.Input(shape=(sequence_length, width)) | |
output_tensor = test_layer(input_tensor) | |
# When using static positional embedding shapes, the output is expected | |
# to be the same as the input shape in all dimensions save batch. | |
expected_output_shape = [None, sequence_length, width] | |
self.assertEqual(expected_output_shape, output_tensor.shape.as_list()) | |
# The default output dtype for this layer should be tf.float32. | |
self.assertEqual(tf.float16, output_tensor.dtype) | |
def test_dynamic_layer_output_shape(self): | |
max_sequence_length = 40 | |
test_layer = position_embedding.PositionEmbedding( | |
max_length=max_sequence_length) | |
# Create a 3-dimensional input (the first dimension is implicit). | |
width = 30 | |
input_tensor = tf_keras.Input(shape=(None, width)) | |
output_tensor = test_layer(input_tensor) | |
# When using dynamic positional embedding shapes, the output is expected | |
# to be the same as the input shape in all dimensions - but may be None if | |
# the input shape is None there. | |
expected_output_shape = [None, None, width] | |
self.assertEqual(expected_output_shape, output_tensor.shape.as_list()) | |
def test_non_default_axis_dynamic(self): | |
max_sequence_length = 60 | |
test_layer = position_embedding.PositionEmbedding( | |
max_length=max_sequence_length, seq_axis=2) | |
# Create a 3-dimensional input (the first dimension is implicit). | |
width = 30 | |
input_tensor = tf_keras.Input(shape=(None, None, width)) | |
output_tensor = test_layer(input_tensor) | |
# When using dynamic positional embedding shapes, the output is expected | |
# to be the same as the input shape in all dimensions - but may be None if | |
# the input shape is None there. | |
expected_output_shape = [None, None, None, width] | |
self.assertEqual(expected_output_shape, output_tensor.shape.as_list()) | |
def test_dynamic_layer_slicing(self): | |
max_sequence_length = 40 | |
test_layer = position_embedding.PositionEmbedding( | |
max_length=max_sequence_length) | |
# Create a 3-dimensional input (the first dimension is implicit). | |
width = 30 | |
input_tensor = tf_keras.Input(shape=(None, width)) | |
output_tensor = test_layer(input_tensor) | |
model = tf_keras.Model(input_tensor, output_tensor) | |
# Create input data that is shorter than max_sequence_length, which should | |
# trigger a down-slice. | |
input_length = 17 | |
# Note: This test explicitly uses a batch size of 1. This is to get around | |
# Keras' restriction on Model invocations: inputs are expected to have the | |
# same batch cardinality as outputs. In practice, this layer should be used | |
# inside a model, where it can be projected when added to another tensor. | |
input_data = np.ones((1, input_length, width)) | |
output_data = model.predict(input_data) | |
self.assertAllEqual([1, input_length, width], output_data.shape) | |
class RelativePositionEmbeddingLayerTest(tf.test.TestCase): | |
def test_relative_tensor_input(self): | |
hidden_size = 8 | |
test_layer = position_embedding.RelativePositionEmbedding( | |
hidden_size=hidden_size) | |
# create a 3-dimensional input for test_layer to infer length as 1. | |
input_tensor = tf.constant([[[0] * hidden_size]]) | |
output_tensor = test_layer(input_tensor) | |
# expected output is the theoretical result of the input based on | |
# sine cosine relative position embedding formula. | |
expected_output_tensor = tf.constant([[0, 0, 0, 0, 1, 1, 1, 1]]) | |
self.assertAllEqual(output_tensor, expected_output_tensor) | |
def test_relative_length_input(self): | |
hidden_size = 8 | |
# When we do not have tensor as input, we explicitly specify length | |
# value when initializing test_layer. | |
test_layer = position_embedding.RelativePositionEmbedding( | |
hidden_size=hidden_size) | |
input_tensor = None | |
output_tensor = test_layer(input_tensor, length=1) | |
# expected output is the theoretical result of the input based on | |
# sine cosine relative position embedding formula. | |
expected_output_tensor = tf.constant([[0, 0, 0, 0, 1, 1, 1, 1]]) | |
self.assertAllEqual(output_tensor, expected_output_tensor) | |
class RelativePositionBiasTest(tf.test.TestCase, parameterized.TestCase): | |
def test_relative_position_bias(self, bidirectional): | |
query = tf.zeros((4, 4, 2)) | |
key = tf.zeros((4, 2, 2)) | |
l = position_embedding.RelativePositionBias( | |
num_heads=3, | |
bidirectional=bidirectional, | |
name="foo") | |
self.assertEqual(l(query, key).shape, (4, 3, 4, 2)) | |
self.assertLen(l.trainable_variables, 1) | |
self.assertEqual(l.trainable_variables[0].name, "foo/rel_embedding:0") | |
def test_relative_position_bucket(self): | |
context_position = tf.range(3)[:, None] | |
memory_position = tf.range(2)[None, :] | |
relative_position = memory_position - context_position | |
outputs = position_embedding._relative_position_bucket(relative_position) | |
self.assertAllEqual(outputs.numpy(), np.array([[0, 17], [1, 0], [2, 1]])) | |
outputs = position_embedding._relative_position_bucket( | |
relative_position, bidirectional=False) | |
self.assertAllEqual(outputs.numpy(), np.array([[0, 0], [1, 0], [2, 1]])) | |
if __name__ == "__main__": | |
tf.test.main() | |