Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Keras-based TransformerEncoder block layer.""" | |
import tensorflow as tf, tf_keras | |
from official.modeling import tf_utils | |
from official.nlp.modeling.layers import reuse_attention as attention | |
class ReuseTransformer(tf_keras.layers.Layer): | |
"""Transformer layer. | |
This layer implements the ReuseTransformer Encoder from | |
"Leveraging redundancy in attention with Reuse Transformers". | |
(https://arxiv.org/abs/2110.06821) | |
""" | |
def __init__(self, | |
num_attention_heads, | |
inner_dim, | |
inner_activation, | |
head_size=None, | |
output_range=None, | |
kernel_initializer="glorot_uniform", | |
bias_initializer="zeros", | |
kernel_regularizer=None, | |
bias_regularizer=None, | |
activity_regularizer=None, | |
kernel_constraint=None, | |
bias_constraint=None, | |
use_bias=True, | |
norm_first=False, | |
norm_epsilon=1e-12, | |
output_dropout=0.0, | |
attention_dropout=0.0, | |
inner_dropout=0.0, | |
attention_initializer=None, | |
attention_axes=None, | |
reuse_attention=0, | |
use_relative_pe=False, | |
pe_max_seq_length=512, | |
layer_idx=None, | |
max_reuse_layer_idx=None, | |
**kwargs): | |
"""Initializes `ReuseTransformer`. | |
Args: | |
num_attention_heads: Number of attention heads. | |
inner_dim: The output dimension of the first Dense layer in a two-layer | |
feedforward network. | |
inner_activation: The activation for the first Dense layer in a two-layer | |
feedforward network. | |
head_size: Projection size of heads. | |
output_range: the sequence output range, [0, output_range) for slicing the | |
target sequence. `None` means the target sequence is not sliced. | |
kernel_initializer: Initializer for dense layer kernels. | |
bias_initializer: Initializer for dense layer biases. | |
kernel_regularizer: Regularizer for dense layer kernels. | |
bias_regularizer: Regularizer for dense layer biases. | |
activity_regularizer: Regularizer for dense layer activity. | |
kernel_constraint: Constraint for dense layer kernels. | |
bias_constraint: Constraint for dense layer kernels. | |
use_bias: Whether to enable use_bias in attention layer. If set False, | |
use_bias in attention layer is disabled. | |
norm_first: Whether to normalize inputs to attention and intermediate | |
dense layers. If set False, output of attention and intermediate dense | |
layers is normalized. | |
norm_epsilon: Epsilon value to initialize normalization layers. | |
output_dropout: Dropout probability for the post-attention and output | |
dropout. | |
attention_dropout: Dropout probability for within the attention layer. | |
inner_dropout: Dropout probability for the first Dense layer in a | |
two-layer feedforward network. | |
attention_initializer: Initializer for kernels of attention layers. If set | |
`None`, attention layers use kernel_initializer as initializer for | |
kernel. | |
attention_axes: axes over which the attention is applied. `None` means | |
attention over all axes, but batch, heads, and features. | |
reuse_attention: reuse_attention: An integer specifying number of heads | |
to reuse. -1 for all heads. | |
use_relative_pe: whether to use relative position bias. | |
pe_max_seq_length: used to set the size of the relative positin encodings. | |
layer_idx: the idx of this layer. | |
max_reuse_layer_idx: layer idx (if passed) greater than this value will | |
not reuse attention scores from previous layers. | |
**kwargs: keyword arguments. | |
""" | |
super().__init__(**kwargs) | |
self._num_heads = num_attention_heads | |
self._inner_dim = inner_dim | |
self._inner_activation = inner_activation | |
self._head_size = head_size | |
self._attention_dropout = attention_dropout | |
self._attention_dropout_rate = attention_dropout | |
self._output_dropout = output_dropout | |
self._output_dropout_rate = output_dropout | |
self._output_range = output_range | |
self._kernel_initializer = tf_keras.initializers.get(kernel_initializer) | |
self._bias_initializer = tf_keras.initializers.get(bias_initializer) | |
self._kernel_regularizer = tf_keras.regularizers.get(kernel_regularizer) | |
self._bias_regularizer = tf_keras.regularizers.get(bias_regularizer) | |
self._activity_regularizer = tf_keras.regularizers.get(activity_regularizer) | |
self._kernel_constraint = tf_keras.constraints.get(kernel_constraint) | |
self._bias_constraint = tf_keras.constraints.get(bias_constraint) | |
self._use_bias = use_bias | |
self._norm_first = norm_first | |
self._norm_epsilon = norm_epsilon | |
self._inner_dropout = inner_dropout | |
self._reuse_attention = reuse_attention | |
self._use_relative_pe = use_relative_pe | |
self._pe_max_seq_length = pe_max_seq_length | |
self._layer_idx = layer_idx | |
self._max_reuse_layer_idx = max_reuse_layer_idx | |
# Overwrite for the first layer and layers greater than max_reuse_layer_idx. | |
if self._layer_idx is not None and ( | |
self._layer_idx == 0 or (self._max_reuse_layer_idx is not None and | |
self._max_reuse_layer_idx < self._layer_idx)): | |
self._reuse_attention = 0 | |
if attention_initializer: | |
self._attention_initializer = tf_keras.initializers.get( | |
attention_initializer) | |
else: | |
self._attention_initializer = tf_utils.clone_initializer( | |
self._kernel_initializer) | |
self._attention_axes = attention_axes | |
def build(self, input_shape): | |
if isinstance(input_shape, tf.TensorShape): | |
input_tensor_shape = input_shape | |
elif isinstance(input_shape, (list, tuple)): | |
input_tensor_shape = tf.TensorShape(input_shape[0]) | |
else: | |
raise ValueError( | |
"The type of input shape argument is not supported, got: %s" % | |
type(input_shape)) | |
einsum_equation = "abc,cd->abd" | |
if len(input_tensor_shape.as_list()) > 3: | |
einsum_equation = "...bc,cd->...bd" | |
hidden_size = input_tensor_shape[-1] | |
if self._head_size is None: | |
if hidden_size % self._num_heads != 0: | |
raise ValueError( | |
"The input size (%d) is not a multiple of the number of attention " | |
"heads (%d)" % (hidden_size, self._num_heads)) | |
self._attention_head_size = int(hidden_size // self._num_heads) | |
else: | |
self._attention_head_size = self._head_size | |
common_kwargs = dict( | |
kernel_regularizer=self._kernel_regularizer, | |
bias_regularizer=self._bias_regularizer, | |
activity_regularizer=self._activity_regularizer, | |
kernel_constraint=self._kernel_constraint, | |
bias_constraint=self._bias_constraint) | |
self._attention_layer = attention.ReuseMultiHeadAttention( | |
num_heads=self._num_heads, | |
key_dim=self._attention_head_size, | |
dropout=self._attention_dropout, | |
use_bias=self._use_bias, | |
kernel_initializer=self._attention_initializer, | |
bias_initializer=tf_utils.clone_initializer(self._bias_initializer), | |
attention_axes=self._attention_axes, | |
reuse_attention=self._reuse_attention, | |
use_relative_pe=self._use_relative_pe, | |
pe_max_seq_length=self._pe_max_seq_length, | |
name="self_attention", | |
**common_kwargs) | |
self._attention_dropout = tf_keras.layers.Dropout( | |
rate=self._output_dropout) | |
# Use float32 in layernorm for numeric stability. | |
# It is probably safe in mixed_float16, but we haven't validated this yet. | |
self._attention_layer_norm = ( | |
tf_keras.layers.LayerNormalization( | |
name="self_attention_layer_norm", | |
axis=-1, | |
epsilon=self._norm_epsilon, | |
dtype=tf.float32)) | |
self._intermediate_dense = tf_keras.layers.EinsumDense( | |
einsum_equation, | |
output_shape=(None, self._inner_dim), | |
bias_axes="d", | |
kernel_initializer=tf_utils.clone_initializer(self._kernel_initializer), | |
bias_initializer=tf_utils.clone_initializer(self._bias_initializer), | |
name="intermediate", | |
**common_kwargs) | |
policy = tf_keras.mixed_precision.global_policy() | |
if policy.name == "mixed_bfloat16": | |
# bfloat16 causes BERT with the LAMB optimizer to not converge | |
# as well, so we use float32. | |
# TODO(b/154538392): Investigate this. | |
policy = tf.float32 | |
self._intermediate_activation_layer = tf_keras.layers.Activation( | |
self._inner_activation, dtype=policy) | |
self._inner_dropout_layer = tf_keras.layers.Dropout( | |
rate=self._inner_dropout) | |
self._output_dense = tf_keras.layers.EinsumDense( | |
einsum_equation, | |
output_shape=(None, hidden_size), | |
bias_axes="d", | |
name="output", | |
kernel_initializer=tf_utils.clone_initializer(self._kernel_initializer), | |
bias_initializer=tf_utils.clone_initializer(self._bias_initializer), | |
**common_kwargs) | |
self._output_dropout = tf_keras.layers.Dropout(rate=self._output_dropout) | |
# Use float32 in layernorm for numeric stability. | |
self._output_layer_norm = tf_keras.layers.LayerNormalization( | |
name="output_layer_norm", | |
axis=-1, | |
epsilon=self._norm_epsilon, | |
dtype=tf.float32) | |
super(ReuseTransformer, self).build(input_shape) | |
def get_config(self): | |
config = { | |
"num_attention_heads": | |
self._num_heads, | |
"inner_dim": | |
self._inner_dim, | |
"inner_activation": | |
self._inner_activation, | |
"head_size": | |
self._head_size, | |
"output_dropout": | |
self._output_dropout_rate, | |
"attention_dropout": | |
self._attention_dropout_rate, | |
"output_range": | |
self._output_range, | |
"reuse_attention": | |
self._reuse_attention, | |
"use_relative_pe": self._use_relative_pe, | |
"pe_max_seq_length": self._pe_max_seq_length, | |
"max_reuse_layer_idx": self._max_reuse_layer_idx, | |
"kernel_initializer": | |
tf_keras.initializers.serialize(self._kernel_initializer), | |
"bias_initializer": | |
tf_keras.initializers.serialize(self._bias_initializer), | |
"kernel_regularizer": | |
tf_keras.regularizers.serialize(self._kernel_regularizer), | |
"bias_regularizer": | |
tf_keras.regularizers.serialize(self._bias_regularizer), | |
"activity_regularizer": | |
tf_keras.regularizers.serialize(self._activity_regularizer), | |
"kernel_constraint": | |
tf_keras.constraints.serialize(self._kernel_constraint), | |
"bias_constraint": | |
tf_keras.constraints.serialize(self._bias_constraint), | |
"use_bias": | |
self._use_bias, | |
"norm_first": | |
self._norm_first, | |
"norm_epsilon": | |
self._norm_epsilon, | |
"inner_dropout": | |
self._inner_dropout, | |
"attention_initializer": | |
tf_keras.initializers.serialize(self._attention_initializer), | |
"attention_axes": self._attention_axes, | |
} | |
base_config = super(ReuseTransformer, self).get_config() | |
return dict(list(base_config.items()) + list(config.items())) | |
def call(self, inputs): | |
"""Transformer self-attention encoder block call. | |
Args: | |
inputs: a single tensor or a list of tensors. | |
`input tensor` as the single sequence of embeddings. | |
[`input tensor`, `attention mask`] to have the additional attention | |
mask. | |
[`query tensor`, `attention mask`, `attention scores`] to have | |
additional attention scores for reuse computation. If `attention scores` | |
is None, the reuse_attention flag will be ignored. | |
Returns: | |
An output tensor with the same dimensions as input/query tensor. | |
Attention scores if return_attention_scores is true. | |
""" | |
if isinstance(inputs, (list, tuple)): | |
if len(inputs) == 2: | |
input_tensor, attention_mask = inputs | |
reuse_attention_scores = None | |
elif len(inputs) == 3: | |
input_tensor, attention_mask, reuse_attention_scores = inputs | |
else: | |
raise ValueError("Unexpected inputs to %s with length at %d" % | |
(self.__class__, len(inputs))) | |
else: | |
input_tensor, attention_mask, reuse_attention_scores = (inputs, None, | |
None) | |
key_value = None | |
if self._reuse_attention != 0 and reuse_attention_scores is None: | |
raise ValueError( | |
"reuse_attention_scores cannot be None when reuse_attention != 0.") | |
if self._output_range: | |
if self._norm_first: | |
source_tensor = input_tensor[:, 0:self._output_range, :] | |
input_tensor = self._attention_layer_norm(input_tensor) | |
if key_value is not None: | |
key_value = self._attention_layer_norm(key_value) | |
target_tensor = input_tensor[:, 0:self._output_range, :] | |
if attention_mask is not None: | |
attention_mask = attention_mask[:, 0:self._output_range, :] | |
if reuse_attention_scores is not None: | |
reuse_attention_scores = reuse_attention_scores[:, :, | |
0:self._output_range, :] | |
else: | |
if self._norm_first: | |
source_tensor = input_tensor | |
input_tensor = self._attention_layer_norm(input_tensor) | |
if key_value is not None: | |
key_value = self._attention_layer_norm(key_value) | |
target_tensor = input_tensor | |
if key_value is None: | |
key_value = input_tensor | |
attention_output = self._attention_layer( | |
query=target_tensor, value=key_value, attention_mask=attention_mask, | |
reuse_attention_scores=reuse_attention_scores, | |
return_attention_scores=True) | |
attention_output, attention_scores = attention_output | |
attention_output = self._attention_dropout(attention_output) | |
if self._norm_first: | |
attention_output = source_tensor + attention_output | |
else: | |
attention_output = self._attention_layer_norm(target_tensor + | |
attention_output) | |
if self._norm_first: | |
source_attention_output = attention_output | |
attention_output = self._output_layer_norm(attention_output) | |
inner_output = self._intermediate_dense(attention_output) | |
inner_output = self._intermediate_activation_layer(inner_output) | |
inner_output = self._inner_dropout_layer(inner_output) | |
layer_output = self._output_dense(inner_output) | |
layer_output = self._output_dropout(layer_output) | |
if self._norm_first: | |
return source_attention_output + layer_output, attention_scores | |
# During mixed precision training, layer norm output is always fp32 for now. | |
# Casts fp32 for the subsequent add. | |
layer_output = tf.cast(layer_output, tf.float32) | |
layer_output = self._output_layer_norm(layer_output + attention_output) | |
return layer_output, attention_scores | |