deanna-emery's picture
updates
93528c6
raw
history blame
13 kB
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Trainer network for ELECTRA models."""
# pylint: disable=g-classes-have-attributes
import copy
import tensorflow as tf, tf_keras
from official.modeling import tf_utils
from official.nlp.modeling import layers
@tf_keras.utils.register_keras_serializable(package='Text')
class ElectraPretrainer(tf_keras.Model):
"""ELECTRA network training model.
This is an implementation of the network structure described in "ELECTRA:
Pre-training Text Encoders as Discriminators Rather Than Generators" (
https://arxiv.org/abs/2003.10555).
The ElectraPretrainer allows a user to pass in two transformer models, one for
generator, the other for discriminator, and instantiates the masked language
model (at generator side) and classification networks (at discriminator side)
that are used to create the training objectives.
*Note* that the model is constructed by Keras Subclass API, where layers are
defined inside `__init__` and `call()` implements the computation.
Args:
generator_network: A transformer network for generator, this network should
output a sequence output and an optional classification output.
discriminator_network: A transformer network for discriminator, this network
should output a sequence output
vocab_size: Size of generator output vocabulary
num_classes: Number of classes to predict from the classification network
for the generator network (not used now)
num_token_predictions: Number of tokens to predict from the masked LM.
mlm_activation: The activation (if any) to use in the masked LM and
classification networks. If None, no activation will be used.
mlm_initializer: The initializer (if any) to use in the masked LM and
classification networks. Defaults to a Glorot uniform initializer.
output_type: The output style for this network. Can be either `logits` or
`predictions`.
disallow_correct: Whether to disallow the generator to generate the exact
same token in the original sentence
"""
def __init__(self,
generator_network,
discriminator_network,
vocab_size,
num_classes,
num_token_predictions,
mlm_activation=None,
mlm_initializer='glorot_uniform',
output_type='logits',
disallow_correct=False,
**kwargs):
super(ElectraPretrainer, self).__init__()
self._config = {
'generator_network': generator_network,
'discriminator_network': discriminator_network,
'vocab_size': vocab_size,
'num_classes': num_classes,
'num_token_predictions': num_token_predictions,
'mlm_activation': mlm_activation,
'mlm_initializer': mlm_initializer,
'output_type': output_type,
'disallow_correct': disallow_correct,
}
for k, v in kwargs.items():
self._config[k] = v
self.generator_network = generator_network
self.discriminator_network = discriminator_network
self.vocab_size = vocab_size
self.num_classes = num_classes
self.num_token_predictions = num_token_predictions
self.mlm_activation = mlm_activation
self.mlm_initializer = mlm_initializer
self.output_type = output_type
self.disallow_correct = disallow_correct
self.masked_lm = layers.MaskedLM(
embedding_table=generator_network.get_embedding_table(),
activation=mlm_activation,
initializer=tf_utils.clone_initializer(mlm_initializer),
output=output_type,
name='generator_masked_lm')
self.classification = layers.ClassificationHead(
inner_dim=generator_network.get_config()['hidden_size'],
num_classes=num_classes,
initializer=tf_utils.clone_initializer(mlm_initializer),
name='generator_classification_head')
self.discriminator_projection = tf_keras.layers.Dense(
units=discriminator_network.get_config()['hidden_size'],
activation=mlm_activation,
kernel_initializer=tf_utils.clone_initializer(mlm_initializer),
name='discriminator_projection_head')
self.discriminator_head = tf_keras.layers.Dense(
units=1,
kernel_initializer=tf_utils.clone_initializer(mlm_initializer))
def call(self, inputs): # pytype: disable=signature-mismatch # overriding-parameter-count-checks
"""ELECTRA forward pass.
Args:
inputs: A dict of all inputs, same as the standard BERT model.
Returns:
outputs: A dict of pretrainer model outputs, including
(1) lm_outputs: A `[batch_size, num_token_predictions, vocab_size]`
tensor indicating logits on masked positions.
(2) sentence_outputs: A `[batch_size, num_classes]` tensor indicating
logits for nsp task.
(3) disc_logits: A `[batch_size, sequence_length]` tensor indicating
logits for discriminator replaced token detection task.
(4) disc_label: A `[batch_size, sequence_length]` tensor indicating
target labels for discriminator replaced token detection task.
"""
input_word_ids = inputs['input_word_ids']
input_mask = inputs['input_mask']
input_type_ids = inputs['input_type_ids']
masked_lm_positions = inputs['masked_lm_positions']
### Generator ###
sequence_output = self.generator_network(
[input_word_ids, input_mask, input_type_ids])['sequence_output']
# The generator encoder network may get outputs from all layers.
if isinstance(sequence_output, list):
sequence_output = sequence_output[-1]
lm_outputs = self.masked_lm(sequence_output, masked_lm_positions)
sentence_outputs = self.classification(sequence_output)
### Sampling from generator ###
fake_data = self._get_fake_data(inputs, lm_outputs, duplicate=True)
### Discriminator ###
disc_input = fake_data['inputs']
disc_label = fake_data['is_fake_tokens']
disc_sequence_output = self.discriminator_network([
disc_input['input_word_ids'], disc_input['input_mask'],
disc_input['input_type_ids']
])['sequence_output']
# The discriminator encoder network may get outputs from all layers.
if isinstance(disc_sequence_output, list):
disc_sequence_output = disc_sequence_output[-1]
disc_logits = self.discriminator_head(
self.discriminator_projection(disc_sequence_output))
disc_logits = tf.squeeze(disc_logits, axis=-1)
outputs = {
'lm_outputs': lm_outputs,
'sentence_outputs': sentence_outputs,
'disc_logits': disc_logits,
'disc_label': disc_label,
}
return outputs
def _get_fake_data(self, inputs, mlm_logits, duplicate=True):
"""Generate corrupted data for discriminator.
Args:
inputs: A dict of all inputs, same as the input of `call()` function
mlm_logits: The generator's output logits
duplicate: Whether to copy the original inputs dict during modifications
Returns:
A dict of generated fake data
"""
inputs = unmask(inputs, duplicate)
if self.disallow_correct:
disallow = tf.one_hot(
inputs['masked_lm_ids'], depth=self.vocab_size, dtype=tf.float32)
else:
disallow = None
sampled_tokens = tf.stop_gradient(
sample_from_softmax(mlm_logits, disallow=disallow))
sampled_tokids = tf.argmax(sampled_tokens, -1, output_type=tf.int32)
updated_input_ids, masked = scatter_update(inputs['input_word_ids'],
sampled_tokids,
inputs['masked_lm_positions'])
labels = masked * (1 - tf.cast(
tf.equal(updated_input_ids, inputs['input_word_ids']), tf.int32))
updated_inputs = get_updated_inputs(
inputs, duplicate, input_word_ids=updated_input_ids)
return {
'inputs': updated_inputs,
'is_fake_tokens': labels,
'sampled_tokens': sampled_tokens
}
@property
def checkpoint_items(self):
"""Returns a dictionary of items to be additionally checkpointed."""
items = dict(encoder=self.discriminator_network)
return items
def get_config(self):
return self._config
@classmethod
def from_config(cls, config, custom_objects=None):
return cls(**config)
def scatter_update(sequence, updates, positions):
"""Scatter-update a sequence.
Args:
sequence: A `[batch_size, seq_len]` or `[batch_size, seq_len, depth]`
tensor.
updates: A tensor of size `batch_size*seq_len(*depth)`.
positions: A `[batch_size, n_positions]` tensor.
Returns:
updated_sequence: A `[batch_size, seq_len]` or
`[batch_size, seq_len, depth]` tensor of "sequence" with elements at
"positions" replaced by the values at "updates". Updates to index 0 are
ignored. If there are duplicated positions the update is only
applied once.
updates_mask: A `[batch_size, seq_len]` mask tensor of which inputs were
updated.
"""
shape = tf_utils.get_shape_list(sequence, expected_rank=[2, 3])
depth_dimension = (len(shape) == 3)
if depth_dimension:
batch_size, seq_len, depth = shape
else:
batch_size, seq_len = shape
depth = 1
sequence = tf.expand_dims(sequence, -1)
n_positions = tf_utils.get_shape_list(positions)[1]
shift = tf.expand_dims(seq_len * tf.range(batch_size), -1)
flat_positions = tf.reshape(positions + shift, [-1, 1])
flat_updates = tf.reshape(updates, [-1, depth])
updates = tf.scatter_nd(flat_positions, flat_updates,
[batch_size * seq_len, depth])
updates = tf.reshape(updates, [batch_size, seq_len, depth])
flat_updates_mask = tf.ones([batch_size * n_positions], tf.int32)
updates_mask = tf.scatter_nd(flat_positions, flat_updates_mask,
[batch_size * seq_len])
updates_mask = tf.reshape(updates_mask, [batch_size, seq_len])
not_first_token = tf.concat([
tf.zeros((batch_size, 1), tf.int32),
tf.ones((batch_size, seq_len - 1), tf.int32)
], -1)
updates_mask *= not_first_token
updates_mask_3d = tf.expand_dims(updates_mask, -1)
# account for duplicate positions
if sequence.dtype == tf.float32:
updates_mask_3d = tf.cast(updates_mask_3d, tf.float32)
updates /= tf.maximum(1.0, updates_mask_3d)
else:
assert sequence.dtype == tf.int32
updates = tf.math.floordiv(updates, tf.maximum(1, updates_mask_3d))
updates_mask = tf.minimum(updates_mask, 1)
updates_mask_3d = tf.minimum(updates_mask_3d, 1)
updated_sequence = (((1 - updates_mask_3d) * sequence) +
(updates_mask_3d * updates))
if not depth_dimension:
updated_sequence = tf.squeeze(updated_sequence, -1)
return updated_sequence, updates_mask
def sample_from_softmax(logits, disallow=None):
"""Implement softmax sampling using gumbel softmax trick.
Args:
logits: A `[batch_size, num_token_predictions, vocab_size]` tensor
indicating the generator output logits for each masked position.
disallow: If `None`, we directly sample tokens from the logits. Otherwise,
this is a tensor of size `[batch_size, num_token_predictions, vocab_size]`
indicating the true word id in each masked position.
Returns:
sampled_tokens: A `[batch_size, num_token_predictions, vocab_size]` one hot
tensor indicating the sampled word id in each masked position.
"""
if disallow is not None:
logits -= 1000.0 * disallow
uniform_noise = tf.random.uniform(
tf_utils.get_shape_list(logits), minval=0, maxval=1)
gumbel_noise = -tf.math.log(-tf.math.log(uniform_noise + 1e-9) + 1e-9)
# Here we essentially follow the original paper and use temperature 1.0 for
# generator output logits.
sampled_tokens = tf.one_hot(
tf.argmax(tf.nn.softmax(logits + gumbel_noise), -1, output_type=tf.int32),
logits.shape[-1])
return sampled_tokens
def unmask(inputs, duplicate):
unmasked_input_word_ids, _ = scatter_update(inputs['input_word_ids'],
inputs['masked_lm_ids'],
inputs['masked_lm_positions'])
return get_updated_inputs(
inputs, duplicate, input_word_ids=unmasked_input_word_ids)
def get_updated_inputs(inputs, duplicate, **kwargs):
if duplicate:
new_inputs = copy.copy(inputs)
else:
new_inputs = inputs
for k, v in kwargs.items():
new_inputs[k] = v
return new_inputs