Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for true_logits_loss.""" | |
from absl.testing import parameterized | |
import tensorflow as tf, tf_keras | |
from official.recommendation.uplift import types | |
from official.recommendation.uplift.losses import true_logits_loss | |
class TrueLogitsLossTest(tf.test.TestCase, parameterized.TestCase): | |
def _get_y_pred(self, **kwargs): | |
# The shared embedding and control/treatment/uplift predictions are | |
# distracting from the test logic. | |
return types.TwoTowerTrainingOutputs( | |
shared_embedding=tf.zeros((3, 1)), | |
control_predictions=tf.zeros((3, 1)), | |
treatment_predictions=tf.zeros((3, 1)), | |
uplift=tf.zeros((3, 1)), | |
**kwargs, | |
) | |
def test_correctness( | |
self, reduction_strategy, reduction_op, loss_fn, loss_fn_kwargs | |
): | |
loss = true_logits_loss.TrueLogitsLoss( | |
loss_fn=loss_fn, | |
reduction=reduction_strategy, | |
**loss_fn_kwargs, | |
) | |
y_true = tf.constant([[0.4], [1.0], [0.0]]) | |
y_pred = self._get_y_pred( | |
control_logits=tf.constant([[0.6], [4.3], [-0.3]]), | |
treatment_logits=tf.constant([[-2.0], [-0.1], [0.5]]), | |
true_logits=tf.constant([[-2.0], [4.3], [0.5]]), | |
is_treatment=tf.constant([[True], [False], [True]]), | |
) | |
expected_loss = reduction_op( | |
loss_fn(y_true, y_pred.true_logits, **loss_fn_kwargs) | |
) | |
self.assertAllEqual(expected_loss, loss(y_true, y_pred)) | |
if __name__ == "__main__": | |
tf.test.main() | |