Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Keras metric for computing the (weighted) variance of a tensor.""" | |
from typing import Optional | |
import tensorflow as tf, tf_keras | |
class Variance(tf_keras.metrics.Metric): | |
"""Computes the (weighted) variance of the given values. | |
For example, if values is [1, 2, 1, 4] then the variance is 1.5. | |
If the weights were specified as [1, 0, 1, 0] then the variance would be 0. | |
If `sample_weight` is `None`, weights default to 1. | |
Use `sample_weight` of 0 to mask values. | |
Standalone usage: | |
>>> m = Variance() | |
>>> m.update_state([1, 2, 1, 4]) | |
>>> m.result().numpy() | |
1.5 | |
>>> m.reset_state() | |
>>> m.update_state([1, 2, 1, 4], sample_weight=[1, 0, 1, 0]) | |
>>> m.result().numpy() | |
0.0 | |
Usage within a Keras layer: | |
```python | |
layer.add_metric(Variance(name="variance")(values)) | |
``` | |
""" | |
def __init__(self, name: str = "variance", dtype: Optional[tf.DType] = None): | |
"""Initializes a Variance metric instance. | |
Args: | |
name: (Optional) string name of the metric instance. | |
dtype: (Optional) data type of the metric result. | |
""" | |
super().__init__(name=name, dtype=dtype) | |
self._first_moment = tf_keras.metrics.Mean(name="first_moment", dtype=dtype) | |
self._second_moment = tf_keras.metrics.Mean( | |
name="second_moment", dtype=dtype | |
) | |
def update_state( | |
self, values: tf.Tensor, sample_weight: Optional[tf.Tensor] = None | |
): | |
self._first_moment.update_state(values=values, sample_weight=sample_weight) | |
self._second_moment.update_state( | |
values=tf.math.square(values), sample_weight=sample_weight | |
) | |
def result(self) -> tf.Tensor: | |
return self._second_moment.result() - tf.math.square( | |
self._first_moment.result() | |
) | |