Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Finetuning experiment configurations.""" | |
# pylint: disable=g-doc-return-or-yield,line-too-long | |
from official.core import config_definitions as cfg | |
from official.core import exp_factory | |
from official.modeling import optimization | |
from official.nlp.data import question_answering_dataloader | |
from official.nlp.data import sentence_prediction_dataloader | |
from official.nlp.data import tagging_dataloader | |
from official.nlp.tasks import question_answering | |
from official.nlp.tasks import sentence_prediction | |
from official.nlp.tasks import tagging | |
def bert_sentence_prediction() -> cfg.ExperimentConfig: | |
r"""BERT GLUE.""" | |
config = cfg.ExperimentConfig( | |
task=sentence_prediction.SentencePredictionConfig( | |
train_data=sentence_prediction_dataloader | |
.SentencePredictionDataConfig(), | |
validation_data=sentence_prediction_dataloader | |
.SentencePredictionDataConfig( | |
is_training=False, drop_remainder=False)), | |
trainer=cfg.TrainerConfig( | |
optimizer_config=optimization.OptimizationConfig({ | |
'optimizer': { | |
'type': 'adamw', | |
'adamw': { | |
'weight_decay_rate': | |
0.01, | |
'exclude_from_weight_decay': | |
['LayerNorm', 'layer_norm', 'bias'], | |
} | |
}, | |
'learning_rate': { | |
'type': 'polynomial', | |
'polynomial': { | |
'initial_learning_rate': 3e-5, | |
'end_learning_rate': 0.0, | |
} | |
}, | |
'warmup': { | |
'type': 'polynomial' | |
} | |
})), | |
restrictions=[ | |
'task.train_data.is_training != None', | |
'task.validation_data.is_training != None' | |
]) | |
return config | |
def bert_sentence_prediction_text() -> cfg.ExperimentConfig: | |
r"""BERT sentence prediction with raw text data. | |
Example: use tf.text and tfds as input with glue_mnli_text.yaml | |
""" | |
config = cfg.ExperimentConfig( | |
task=sentence_prediction.SentencePredictionConfig( | |
train_data=sentence_prediction_dataloader | |
.SentencePredictionTextDataConfig(), | |
validation_data=sentence_prediction_dataloader | |
.SentencePredictionTextDataConfig( | |
is_training=False, drop_remainder=False)), | |
trainer=cfg.TrainerConfig( | |
optimizer_config=optimization.OptimizationConfig({ | |
'optimizer': { | |
'type': 'adamw', | |
'adamw': { | |
'weight_decay_rate': | |
0.01, | |
'exclude_from_weight_decay': | |
['LayerNorm', 'layer_norm', 'bias'], | |
} | |
}, | |
'learning_rate': { | |
'type': 'polynomial', | |
'polynomial': { | |
'initial_learning_rate': 3e-5, | |
'end_learning_rate': 0.0, | |
} | |
}, | |
'warmup': { | |
'type': 'polynomial' | |
} | |
})), | |
restrictions=[ | |
'task.train_data.is_training != None', | |
'task.validation_data.is_training != None' | |
]) | |
return config | |
def bert_squad() -> cfg.ExperimentConfig: | |
"""BERT Squad V1/V2.""" | |
config = cfg.ExperimentConfig( | |
task=question_answering.QuestionAnsweringConfig( | |
train_data=question_answering_dataloader.QADataConfig(), | |
validation_data=question_answering_dataloader.QADataConfig()), | |
trainer=cfg.TrainerConfig( | |
optimizer_config=optimization.OptimizationConfig({ | |
'optimizer': { | |
'type': 'adamw', | |
'adamw': { | |
'weight_decay_rate': | |
0.01, | |
'exclude_from_weight_decay': | |
['LayerNorm', 'layer_norm', 'bias'], | |
} | |
}, | |
'learning_rate': { | |
'type': 'polynomial', | |
'polynomial': { | |
'initial_learning_rate': 8e-5, | |
'end_learning_rate': 0.0, | |
} | |
}, | |
'warmup': { | |
'type': 'polynomial' | |
} | |
})), | |
restrictions=[ | |
'task.train_data.is_training != None', | |
'task.validation_data.is_training != None' | |
]) | |
return config | |
def bert_tagging() -> cfg.ExperimentConfig: | |
"""BERT tagging task.""" | |
config = cfg.ExperimentConfig( | |
task=tagging.TaggingConfig( | |
train_data=tagging_dataloader.TaggingDataConfig(), | |
validation_data=tagging_dataloader.TaggingDataConfig( | |
is_training=False, drop_remainder=False)), | |
trainer=cfg.TrainerConfig( | |
optimizer_config=optimization.OptimizationConfig({ | |
'optimizer': { | |
'type': 'adamw', | |
'adamw': { | |
'weight_decay_rate': | |
0.01, | |
'exclude_from_weight_decay': | |
['LayerNorm', 'layer_norm', 'bias'], | |
} | |
}, | |
'learning_rate': { | |
'type': 'polynomial', | |
'polynomial': { | |
'initial_learning_rate': 8e-5, | |
'end_learning_rate': 0.0, | |
} | |
}, | |
'warmup': { | |
'type': 'polynomial' | |
} | |
})), | |
restrictions=[ | |
'task.train_data.is_training != None', | |
'task.validation_data.is_training != None', | |
]) | |
return config | |