Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Pretraining experiment configurations.""" | |
# pylint: disable=g-doc-return-or-yield,line-too-long | |
from official.core import config_definitions as cfg | |
from official.core import exp_factory | |
from official.modeling import optimization | |
from official.nlp.data import pretrain_dataloader | |
from official.nlp.data import pretrain_dynamic_dataloader | |
from official.nlp.data import pretrain_text_dataloader | |
from official.nlp.tasks import electra_task | |
from official.nlp.tasks import masked_lm | |
_TRAINER = cfg.TrainerConfig( | |
train_steps=1000000, | |
optimizer_config=optimization.OptimizationConfig({ | |
'optimizer': { | |
'type': 'adamw', | |
'adamw': { | |
'weight_decay_rate': | |
0.01, | |
'exclude_from_weight_decay': [ | |
'LayerNorm', 'layer_norm', 'bias' | |
], | |
} | |
}, | |
'learning_rate': { | |
'type': 'polynomial', | |
'polynomial': { | |
'initial_learning_rate': 1e-4, | |
'end_learning_rate': 0.0, | |
} | |
}, | |
'warmup': { | |
'type': 'polynomial' | |
} | |
})) | |
def bert_pretraining() -> cfg.ExperimentConfig: | |
"""BERT pretraining experiment.""" | |
config = cfg.ExperimentConfig( | |
runtime=cfg.RuntimeConfig(enable_xla=True), | |
task=masked_lm.MaskedLMConfig( | |
train_data=pretrain_dataloader.BertPretrainDataConfig(), | |
validation_data=pretrain_dataloader.BertPretrainDataConfig( | |
is_training=False)), | |
trainer=_TRAINER, | |
restrictions=[ | |
'task.train_data.is_training != None', | |
'task.validation_data.is_training != None' | |
]) | |
return config | |
def bert_dynamic() -> cfg.ExperimentConfig: | |
"""BERT base with dynamic input sequences. | |
TPU needs to run with tf.data service with round-robin behavior. | |
""" | |
config = cfg.ExperimentConfig( | |
runtime=cfg.RuntimeConfig(enable_xla=True), | |
task=masked_lm.MaskedLMConfig( | |
train_data=pretrain_dynamic_dataloader.BertPretrainDataConfig(), | |
validation_data=pretrain_dataloader.BertPretrainDataConfig( | |
is_training=False)), | |
trainer=_TRAINER, | |
restrictions=[ | |
'task.train_data.is_training != None', | |
'task.validation_data.is_training != None' | |
]) | |
return config | |
def bert_text_wiki_pretraining() -> cfg.ExperimentConfig: | |
r"""BERT with wiki text tfds. | |
Note that: only wikipedia english corpus is used. It cannot exactly reproduce | |
BERT training setup because the next sentence sampling is hard to match the | |
implementation with tf ops. | |
""" | |
config = cfg.ExperimentConfig( | |
task=masked_lm.MaskedLMConfig( | |
train_data=pretrain_text_dataloader.BertPretrainTextDataConfig( | |
tfds_name='wikipedia/20201201.en', | |
tfds_split='train', | |
vocab_file_path='TODO for users', | |
), | |
validation_data=pretrain_text_dataloader.BertPretrainTextDataConfig( | |
tfds_name='wikipedia/20201201.en', | |
tfds_split='train', | |
vocab_file_path='TODO for users', | |
is_training=False)), | |
trainer=_TRAINER, | |
restrictions=[ | |
'task.train_data.is_training != None', | |
'task.validation_data.is_training != None' | |
]) | |
return config | |
def electra_pretrain() -> cfg.ExperimentConfig: | |
"""ELECTRA pretraining experiment.""" | |
config = cfg.ExperimentConfig( | |
runtime=cfg.RuntimeConfig(enable_xla=True), | |
task=electra_task.ElectraPretrainConfig( | |
train_data=pretrain_dataloader.BertPretrainDataConfig(), | |
validation_data=pretrain_dataloader.BertPretrainDataConfig( | |
is_training=False | |
), | |
), | |
trainer=_TRAINER, | |
restrictions=[ | |
'task.train_data.is_training != None', | |
'task.validation_data.is_training != None', | |
], | |
) | |
return config | |