Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
from absl import flags | |
from absl.testing import flagsaver | |
from absl.testing import parameterized | |
import tensorflow as tf, tf_keras | |
# pylint: disable=unused-import | |
from official.common import registry_imports | |
# pylint: enable=unused-import | |
from official.common import flags as tfm_flags | |
from official.core import task_factory | |
from official.core import train_lib | |
from official.core import train_utils | |
from official.nlp import continuous_finetune_lib | |
FLAGS = flags.FLAGS | |
tfm_flags.define_flags() | |
class ContinuousFinetuneTest(tf.test.TestCase, parameterized.TestCase): | |
def setUp(self): | |
super().setUp() | |
self._model_dir = os.path.join(self.get_temp_dir(), 'model_dir') | |
def testContinuousFinetune(self): | |
pretrain_steps = 1 | |
src_model_dir = self.get_temp_dir() | |
flags_dict = dict( | |
experiment='mock', | |
mode='continuous_train_and_eval', | |
model_dir=self._model_dir, | |
params_override={ | |
'task': { | |
'init_checkpoint': src_model_dir, | |
}, | |
'trainer': { | |
'continuous_eval_timeout': 1, | |
'steps_per_loop': 1, | |
'train_steps': 1, | |
'validation_steps': 1, | |
'best_checkpoint_export_subdir': 'best_ckpt', | |
'best_checkpoint_eval_metric': 'acc', | |
'optimizer_config': { | |
'optimizer': { | |
'type': 'sgd' | |
}, | |
'learning_rate': { | |
'type': 'constant' | |
} | |
} | |
} | |
}) | |
with flagsaver.flagsaver(**flags_dict): | |
# Train and save some checkpoints. | |
params = train_utils.parse_configuration(flags.FLAGS) | |
distribution_strategy = tf.distribute.get_strategy() | |
with distribution_strategy.scope(): | |
task = task_factory.get_task(params.task, logging_dir=src_model_dir) | |
_ = train_lib.run_experiment( | |
distribution_strategy=distribution_strategy, | |
task=task, | |
mode='train', | |
params=params, | |
model_dir=src_model_dir) | |
params = train_utils.parse_configuration(FLAGS) | |
eval_metrics = continuous_finetune_lib.run_continuous_finetune( | |
FLAGS.mode, | |
params, | |
FLAGS.model_dir, | |
run_post_eval=True, | |
pretrain_steps=pretrain_steps) | |
self.assertIn('best_acc', eval_metrics) | |
self.assertFalse( | |
tf.io.gfile.exists(os.path.join(FLAGS.model_dir, 'checkpoint'))) | |
if __name__ == '__main__': | |
tf.test.main() | |