Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for cls_head.""" | |
from absl.testing import parameterized | |
import tensorflow as tf, tf_keras | |
from official.nlp.modeling.layers import cls_head | |
class ClassificationHeadTest(tf.test.TestCase, parameterized.TestCase): | |
def test_pooler_layer(self, inner_dim, num_weights_expected): | |
test_layer = cls_head.ClassificationHead(inner_dim=inner_dim, num_classes=2) | |
features = tf.zeros(shape=(2, 10, 10), dtype=tf.float32) | |
_ = test_layer(features) | |
num_weights_observed = len(test_layer.get_weights()) | |
self.assertEqual(num_weights_observed, num_weights_expected) | |
def test_layer_invocation(self): | |
test_layer = cls_head.ClassificationHead(inner_dim=5, num_classes=2) | |
features = tf.zeros(shape=(2, 10, 10), dtype=tf.float32) | |
output = test_layer(features) | |
self.assertAllClose(output, [[0., 0.], [0., 0.]]) | |
self.assertSameElements(test_layer.checkpoint_items.keys(), | |
["pooler_dense"]) | |
outputs = test_layer(features, only_project=True) | |
self.assertEqual(outputs.shape, (2, 5)) | |
def test_layer_serialization(self): | |
layer = cls_head.ClassificationHead(10, 2) | |
new_layer = cls_head.ClassificationHead.from_config(layer.get_config()) | |
# If the serialization was successful, the new config should match the old. | |
self.assertAllEqual(layer.get_config(), new_layer.get_config()) | |
class MultiClsHeadsTest(tf.test.TestCase, parameterized.TestCase): | |
def test_pooler_layer(self, inner_dim, num_weights_expected): | |
cls_list = [("foo", 2), ("bar", 3)] | |
test_layer = cls_head.MultiClsHeads(inner_dim=inner_dim, cls_list=cls_list) | |
features = tf.zeros(shape=(2, 10, 10), dtype=tf.float32) | |
_ = test_layer(features) | |
num_weights_observed = len(test_layer.get_weights()) | |
self.assertEqual(num_weights_observed, num_weights_expected) | |
def test_layer_invocation(self): | |
cls_list = [("foo", 2), ("bar", 3)] | |
test_layer = cls_head.MultiClsHeads(inner_dim=5, cls_list=cls_list) | |
features = tf.zeros(shape=(2, 10, 10), dtype=tf.float32) | |
outputs = test_layer(features) | |
self.assertAllClose(outputs["foo"], [[0., 0.], [0., 0.]]) | |
self.assertAllClose(outputs["bar"], [[0., 0., 0.], [0., 0., 0.]]) | |
self.assertSameElements(test_layer.checkpoint_items.keys(), | |
["pooler_dense", "foo", "bar"]) | |
outputs = test_layer(features, only_project=True) | |
self.assertEqual(outputs.shape, (2, 5)) | |
def test_layer_serialization(self): | |
cls_list = [("foo", 2), ("bar", 3)] | |
test_layer = cls_head.MultiClsHeads(inner_dim=5, cls_list=cls_list) | |
new_layer = cls_head.MultiClsHeads.from_config(test_layer.get_config()) | |
# If the serialization was successful, the new config should match the old. | |
self.assertAllEqual(test_layer.get_config(), new_layer.get_config()) | |
class GaussianProcessClassificationHead(tf.test.TestCase, | |
parameterized.TestCase): | |
def setUp(self): | |
super().setUp() | |
self.spec_norm_kwargs = dict(norm_multiplier=1.,) | |
self.gp_layer_kwargs = dict(num_inducing=512) | |
def test_pooler_layer(self, inner_dim, num_weights_expected): | |
test_layer = cls_head.GaussianProcessClassificationHead( | |
inner_dim=inner_dim, | |
num_classes=2, | |
use_spec_norm=True, | |
use_gp_layer=True, | |
initializer="zeros", | |
**self.spec_norm_kwargs, | |
**self.gp_layer_kwargs) | |
features = tf.zeros(shape=(2, 10, 10), dtype=tf.float32) | |
_ = test_layer(features) | |
num_weights_observed = len(test_layer.get_weights()) | |
self.assertEqual(num_weights_observed, num_weights_expected) | |
def test_layer_invocation(self): | |
test_layer = cls_head.GaussianProcessClassificationHead( | |
inner_dim=5, | |
num_classes=2, | |
use_spec_norm=True, | |
use_gp_layer=True, | |
initializer="zeros", | |
**self.spec_norm_kwargs, | |
**self.gp_layer_kwargs) | |
features = tf.zeros(shape=(2, 10, 10), dtype=tf.float32) | |
output = test_layer(features) | |
self.assertAllClose(output, [[0., 0.], [0., 0.]]) | |
self.assertSameElements(test_layer.checkpoint_items.keys(), | |
["pooler_dense"]) | |
def test_sngp_output_shape(self, use_gp_layer, return_covmat): | |
batch_size = 32 | |
num_classes = 2 | |
test_layer = cls_head.GaussianProcessClassificationHead( | |
inner_dim=5, | |
num_classes=num_classes, | |
use_spec_norm=True, | |
use_gp_layer=use_gp_layer, | |
**self.spec_norm_kwargs, | |
**self.gp_layer_kwargs) | |
features = tf.zeros(shape=(batch_size, 10, 10), dtype=tf.float32) | |
outputs = test_layer(features, return_covmat=return_covmat) | |
if use_gp_layer and return_covmat: | |
self.assertIsInstance(outputs, tuple) | |
self.assertEqual(outputs[0].shape, (batch_size, num_classes)) | |
self.assertEqual(outputs[1].shape, (batch_size, batch_size)) | |
else: | |
self.assertIsInstance(outputs, tf.Tensor) | |
self.assertEqual(outputs.shape, (batch_size, num_classes)) | |
def test_sngp_train_logits(self): | |
"""Checks if temperature scaling is disabled during training.""" | |
features = tf.zeros(shape=(5, 10, 10), dtype=tf.float32) | |
gp_layer = cls_head.GaussianProcessClassificationHead( | |
inner_dim=5, num_classes=2) | |
# Without temperature. | |
gp_layer.temperature = None | |
outputs_no_temp = gp_layer(features, training=True) | |
# With temperature. | |
gp_layer.temperature = 10. | |
outputs_with_temp = gp_layer(features, training=True) | |
self.assertAllEqual(outputs_no_temp, outputs_with_temp) | |
def test_layer_serialization(self): | |
layer = cls_head.GaussianProcessClassificationHead( | |
inner_dim=5, | |
num_classes=2, | |
use_spec_norm=True, | |
use_gp_layer=True, | |
**self.spec_norm_kwargs, | |
**self.gp_layer_kwargs) | |
new_layer = cls_head.GaussianProcessClassificationHead.from_config( | |
layer.get_config()) | |
# If the serialization was successful, the new config should match the old. | |
self.assertAllEqual(layer.get_config(), new_layer.get_config()) | |
def test_sngp_kwargs_serialization(self): | |
"""Tests if SNGP-specific kwargs are added during serialization.""" | |
layer = cls_head.GaussianProcessClassificationHead( | |
inner_dim=5, | |
num_classes=2, | |
use_spec_norm=True, | |
use_gp_layer=True, | |
**self.spec_norm_kwargs, | |
**self.gp_layer_kwargs) | |
layer_config = layer.get_config() | |
# The config value should equal to those defined in setUp(). | |
self.assertEqual(layer_config["norm_multiplier"], 1.) | |
self.assertEqual(layer_config["num_inducing"], 512) | |
class PerQueryDenseHeadTest(tf.test.TestCase, parameterized.TestCase): | |
def test_layer_invocation(self, num_queries, features, use_bias): | |
batch_size = 5 | |
hidden_size = 10 | |
layer = cls_head.PerQueryDenseHead( | |
num_queries=num_queries, features=features, use_bias=use_bias) | |
inputs = tf.zeros( | |
shape=(batch_size, num_queries, hidden_size), dtype=tf.float32) | |
outputs = layer(inputs) | |
self.assertEqual(outputs.shape, [batch_size, num_queries, features]) | |
def test_layer_serialization(self): | |
layer = cls_head.PerQueryDenseHead( | |
num_queries=10, features=2, use_bias=True) | |
new_layer = cls_head.PerQueryDenseHead.from_config(layer.get_config()) | |
# If the serialization was successful, the new config should match the old. | |
self.assertAllEqual(layer.get_config(), new_layer.get_config()) | |
if __name__ == "__main__": | |
tf.test.main() | |