deanna-emery's picture
updates
93528c6
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Masked language model network."""
# pylint: disable=g-classes-have-attributes
import tensorflow as tf, tf_keras
@tf_keras.utils.register_keras_serializable(package='Text')
class MaskedLM(tf_keras.layers.Layer):
"""Masked language model network head for BERT modeling.
This layer implements a masked language model based on the provided
transformer based encoder. It assumes that the encoder network being passed
has a "get_embedding_table()" method.
Example:
```python
encoder=modeling.networks.BertEncoder(...)
lm_layer=MaskedLM(embedding_table=encoder.get_embedding_table())
```
Args:
embedding_table: The embedding table from encoder network.
activation: The activation, if any, for the dense layer.
initializer: The initializer for the dense layer. Defaults to a Glorot
uniform initializer.
output: The output style for this layer. Can be either 'logits' or
'predictions'.
"""
def __init__(self,
embedding_table,
activation=None,
initializer='glorot_uniform',
output='logits',
name=None,
**kwargs):
super().__init__(name=name, **kwargs)
self.embedding_table = embedding_table
self.activation = activation
self.initializer = tf_keras.initializers.get(initializer)
if output not in ('predictions', 'logits'):
raise ValueError(
('Unknown `output` value "%s". `output` can be either "logits" or '
'"predictions"') % output)
self._output_type = output
def build(self, input_shape):
self._vocab_size, hidden_size = self.embedding_table.shape
self.dense = tf_keras.layers.Dense(
hidden_size,
activation=self.activation,
kernel_initializer=self.initializer,
name='transform/dense')
self.layer_norm = tf_keras.layers.LayerNormalization(
axis=-1, epsilon=1e-12, name='transform/LayerNorm')
self.bias = self.add_weight(
'output_bias/bias',
shape=(self._vocab_size,),
initializer='zeros',
trainable=True)
super().build(input_shape)
def call(self, sequence_data, masked_positions):
masked_lm_input = self._gather_indexes(sequence_data, masked_positions)
lm_data = self.dense(masked_lm_input)
lm_data = self.layer_norm(lm_data)
lm_data = tf.matmul(lm_data, self.embedding_table, transpose_b=True)
logits = tf.nn.bias_add(lm_data, self.bias)
masked_positions_length = (
masked_positions.shape.as_list()[1] or tf.shape(masked_positions)[1]
)
batch_size = (
masked_positions.shape.as_list()[0] or tf.shape(masked_positions)[0]
)
logits = tf.reshape(
logits,
[batch_size, masked_positions_length, self._vocab_size],
)
if self._output_type == 'logits':
return logits
return tf.nn.log_softmax(logits)
def get_config(self):
raise NotImplementedError('MaskedLM cannot be directly serialized because '
'it has variable sharing logic.')
def _gather_indexes(self, sequence_tensor, positions):
"""Gathers the vectors at the specific positions, for performance.
Args:
sequence_tensor: Sequence output of shape
(`batch_size`, `seq_length`, num_hidden) where num_hidden is number of
hidden units.
positions: Positions ids of tokens in sequence to mask for pretraining
of with dimension (batch_size, num_predictions) where
`num_predictions` is maximum number of tokens to mask out and predict
per each sequence.
Returns:
Masked out sequence tensor of shape (batch_size * num_predictions,
num_hidden).
"""
sequence_shape = tf.shape(sequence_tensor)
batch_size, seq_length = sequence_shape[0], sequence_shape[1]
width = sequence_tensor.shape.as_list()[2] or sequence_shape[2]
flat_offsets = tf.reshape(
tf.range(0, batch_size, dtype=tf.int32) * seq_length, [-1, 1])
flat_positions = tf.reshape(
positions + tf.cast(flat_offsets, positions.dtype), [-1])
flat_sequence_tensor = tf.reshape(sequence_tensor,
[batch_size * seq_length, width])
output_tensor = tf.gather(flat_sequence_tensor, flat_positions)
return output_tensor