Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for nlp.serving.export_saved_model.""" | |
from absl.testing import parameterized | |
import tensorflow as tf, tf_keras | |
from official.nlp.configs import bert | |
from official.nlp.configs import encoders | |
from official.nlp.serving import export_savedmodel | |
from official.nlp.serving import export_savedmodel_util | |
from official.nlp.tasks import masked_lm | |
from official.nlp.tasks import sentence_prediction | |
from official.nlp.tasks import tagging | |
class ExportSavedModelTest(tf.test.TestCase, parameterized.TestCase): | |
def test_create_export_module(self): | |
export_module = export_savedmodel.create_export_module( | |
task_name="SentencePrediction", | |
config_file=None, | |
serving_params={ | |
"inputs_only": False, | |
"parse_sequence_length": 10 | |
}) | |
self.assertEqual(export_module.name, "sentence_prediction") | |
self.assertFalse(export_module.params.inputs_only) | |
self.assertEqual(export_module.params.parse_sequence_length, 10) | |
def test_sentence_prediction(self): | |
config = sentence_prediction.SentencePredictionConfig( | |
model=sentence_prediction.ModelConfig( | |
encoder=encoders.EncoderConfig( | |
bert=encoders.BertEncoderConfig(vocab_size=30522, | |
num_layers=1)), | |
num_classes=2)) | |
task = sentence_prediction.SentencePredictionTask(config) | |
model = task.build_model() | |
ckpt = tf.train.Checkpoint(model=model) | |
ckpt_path = ckpt.save(self.get_temp_dir()) | |
export_module_cls = export_savedmodel.lookup_export_module(task) | |
serving_params = {"inputs_only": False} | |
params = export_module_cls.Params(**serving_params) | |
export_module = export_module_cls(params=params, model=model) | |
export_dir = export_savedmodel_util.export( | |
export_module, | |
function_keys=["serve"], | |
checkpoint_path=ckpt_path, | |
export_savedmodel_dir=self.get_temp_dir()) | |
imported = tf.saved_model.load(export_dir) | |
serving_fn = imported.signatures["serving_default"] | |
dummy_ids = tf.ones((1, 5), dtype=tf.int32) | |
inputs = dict( | |
input_word_ids=dummy_ids, | |
input_mask=dummy_ids, | |
input_type_ids=dummy_ids) | |
ref_outputs = model(inputs) | |
outputs = serving_fn(**inputs) | |
self.assertAllClose(ref_outputs, outputs["outputs"]) | |
self.assertEqual(outputs["outputs"].shape, (1, 2)) | |
def test_masked_lm(self): | |
config = masked_lm.MaskedLMConfig( | |
model=bert.PretrainerConfig( | |
encoder=encoders.EncoderConfig( | |
bert=encoders.BertEncoderConfig(vocab_size=30522, | |
num_layers=1)), | |
cls_heads=[ | |
bert.ClsHeadConfig(inner_dim=10, num_classes=2, name="foo") | |
])) | |
task = masked_lm.MaskedLMTask(config) | |
model = task.build_model() | |
ckpt = tf.train.Checkpoint(model=model) | |
ckpt_path = ckpt.save(self.get_temp_dir()) | |
export_module_cls = export_savedmodel.lookup_export_module(task) | |
serving_params = { | |
"cls_head_name": "foo", | |
"parse_sequence_length": 10, | |
"max_predictions_per_seq": 5 | |
} | |
params = export_module_cls.Params(**serving_params) | |
export_module = export_module_cls(params=params, model=model) | |
export_dir = export_savedmodel_util.export( | |
export_module, | |
function_keys={ | |
"serve": "serving_default", | |
"serve_examples": "serving_examples" | |
}, | |
checkpoint_path=ckpt_path, | |
export_savedmodel_dir=self.get_temp_dir()) | |
imported = tf.saved_model.load(export_dir) | |
self.assertSameElements(imported.signatures.keys(), | |
["serving_default", "serving_examples"]) | |
serving_fn = imported.signatures["serving_default"] | |
dummy_ids = tf.ones((1, 10), dtype=tf.int32) | |
dummy_pos = tf.ones((1, 5), dtype=tf.int32) | |
outputs = serving_fn( | |
input_word_ids=dummy_ids, | |
input_mask=dummy_ids, | |
input_type_ids=dummy_ids, | |
masked_lm_positions=dummy_pos) | |
self.assertEqual(outputs["classification"].shape, (1, 2)) | |
def test_tagging(self, output_encoder_outputs): | |
hidden_size = 768 | |
num_classes = 3 | |
config = tagging.TaggingConfig( | |
model=tagging.ModelConfig( | |
encoder=encoders.EncoderConfig( | |
bert=encoders.BertEncoderConfig( | |
hidden_size=hidden_size, num_layers=1))), | |
class_names=["class_0", "class_1", "class_2"]) | |
task = tagging.TaggingTask(config) | |
model = task.build_model() | |
ckpt = tf.train.Checkpoint(model=model) | |
ckpt_path = ckpt.save(self.get_temp_dir()) | |
export_module_cls = export_savedmodel.lookup_export_module(task) | |
serving_params = { | |
"parse_sequence_length": 10, | |
} | |
params = export_module_cls.Params( | |
**serving_params, output_encoder_outputs=output_encoder_outputs) | |
export_module = export_module_cls(params=params, model=model) | |
export_dir = export_savedmodel_util.export( | |
export_module, | |
function_keys={ | |
"serve": "serving_default", | |
"serve_examples": "serving_examples" | |
}, | |
checkpoint_path=ckpt_path, | |
export_savedmodel_dir=self.get_temp_dir()) | |
imported = tf.saved_model.load(export_dir) | |
self.assertCountEqual(imported.signatures.keys(), | |
["serving_default", "serving_examples"]) | |
serving_fn = imported.signatures["serving_default"] | |
dummy_ids = tf.ones((1, 5), dtype=tf.int32) | |
inputs = dict( | |
input_word_ids=dummy_ids, | |
input_mask=dummy_ids, | |
input_type_ids=dummy_ids) | |
outputs = serving_fn(**inputs) | |
self.assertEqual(outputs["logits"].shape, (1, 5, num_classes)) | |
if output_encoder_outputs: | |
self.assertEqual(outputs["encoder_outputs"].shape, (1, 5, hidden_size)) | |
if __name__ == "__main__": | |
tf.test.main() | |