deanna-emery's picture
updates
93528c6
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for official.nlp.tasks.sentence_prediction."""
import functools
import os
from absl.testing import parameterized
import tensorflow as tf, tf_keras
from official.legacy.bert import configs
from official.nlp.configs import bert
from official.nlp.configs import encoders
from official.nlp.data import dual_encoder_dataloader
from official.nlp.tasks import dual_encoder
from official.nlp.tasks import masked_lm
from official.nlp.tools import export_tfhub_lib
class DualEncoderTaskTest(tf.test.TestCase, parameterized.TestCase):
def setUp(self):
super(DualEncoderTaskTest, self).setUp()
self._train_data_config = (
dual_encoder_dataloader.DualEncoderDataConfig(
input_path="dummy", seq_length=32))
def get_model_config(self):
return dual_encoder.ModelConfig(
max_sequence_length=32,
encoder=encoders.EncoderConfig(
bert=encoders.BertEncoderConfig(vocab_size=30522, num_layers=1)))
def _run_task(self, config):
task = dual_encoder.DualEncoderTask(config)
model = task.build_model()
metrics = task.build_metrics()
strategy = tf.distribute.get_strategy()
dataset = strategy.distribute_datasets_from_function(
functools.partial(task.build_inputs, config.train_data))
dataset.batch(10)
iterator = iter(dataset)
optimizer = tf_keras.optimizers.SGD(lr=0.1)
task.train_step(next(iterator), model, optimizer, metrics=metrics)
task.validation_step(next(iterator), model, metrics=metrics)
model.save(os.path.join(self.get_temp_dir(), "saved_model"))
def test_task(self):
config = dual_encoder.DualEncoderConfig(
init_checkpoint=self.get_temp_dir(),
model=self.get_model_config(),
train_data=self._train_data_config)
task = dual_encoder.DualEncoderTask(config)
model = task.build_model()
metrics = task.build_metrics()
dataset = task.build_inputs(config.train_data)
iterator = iter(dataset)
optimizer = tf_keras.optimizers.SGD(lr=0.1)
task.train_step(next(iterator), model, optimizer, metrics=metrics)
task.validation_step(next(iterator), model, metrics=metrics)
# Saves a checkpoint.
pretrain_cfg = bert.PretrainerConfig(
encoder=encoders.EncoderConfig(
bert=encoders.BertEncoderConfig(vocab_size=30522, num_layers=1)))
pretrain_model = masked_lm.MaskedLMTask(None).build_model(pretrain_cfg)
ckpt = tf.train.Checkpoint(
model=pretrain_model, **pretrain_model.checkpoint_items)
ckpt.save(config.init_checkpoint)
task.initialize(model)
def _export_bert_tfhub(self):
bert_config = configs.BertConfig(
vocab_size=30522,
hidden_size=16,
intermediate_size=32,
max_position_embeddings=128,
num_attention_heads=2,
num_hidden_layers=4)
encoder = export_tfhub_lib.get_bert_encoder(bert_config)
model_checkpoint_dir = os.path.join(self.get_temp_dir(), "checkpoint")
checkpoint = tf.train.Checkpoint(encoder=encoder)
checkpoint.save(os.path.join(model_checkpoint_dir, "test"))
model_checkpoint_path = tf.train.latest_checkpoint(model_checkpoint_dir)
vocab_file = os.path.join(self.get_temp_dir(), "uncased_vocab.txt")
with tf.io.gfile.GFile(vocab_file, "w") as f:
f.write("dummy content")
export_path = os.path.join(self.get_temp_dir(), "hub")
export_tfhub_lib.export_model(
export_path,
bert_config=bert_config,
encoder_config=None,
model_checkpoint_path=model_checkpoint_path,
vocab_file=vocab_file,
do_lower_case=True,
with_mlm=False)
return export_path
def test_task_with_hub(self):
hub_module_url = self._export_bert_tfhub()
config = dual_encoder.DualEncoderConfig(
hub_module_url=hub_module_url,
model=self.get_model_config(),
train_data=self._train_data_config)
self._run_task(config)
if __name__ == "__main__":
tf.test.main()