Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for official.nlp.tasks.sentence_prediction.""" | |
import functools | |
import os | |
from absl.testing import parameterized | |
import tensorflow as tf, tf_keras | |
from official.legacy.bert import configs | |
from official.nlp.configs import bert | |
from official.nlp.configs import encoders | |
from official.nlp.data import dual_encoder_dataloader | |
from official.nlp.tasks import dual_encoder | |
from official.nlp.tasks import masked_lm | |
from official.nlp.tools import export_tfhub_lib | |
class DualEncoderTaskTest(tf.test.TestCase, parameterized.TestCase): | |
def setUp(self): | |
super(DualEncoderTaskTest, self).setUp() | |
self._train_data_config = ( | |
dual_encoder_dataloader.DualEncoderDataConfig( | |
input_path="dummy", seq_length=32)) | |
def get_model_config(self): | |
return dual_encoder.ModelConfig( | |
max_sequence_length=32, | |
encoder=encoders.EncoderConfig( | |
bert=encoders.BertEncoderConfig(vocab_size=30522, num_layers=1))) | |
def _run_task(self, config): | |
task = dual_encoder.DualEncoderTask(config) | |
model = task.build_model() | |
metrics = task.build_metrics() | |
strategy = tf.distribute.get_strategy() | |
dataset = strategy.distribute_datasets_from_function( | |
functools.partial(task.build_inputs, config.train_data)) | |
dataset.batch(10) | |
iterator = iter(dataset) | |
optimizer = tf_keras.optimizers.SGD(lr=0.1) | |
task.train_step(next(iterator), model, optimizer, metrics=metrics) | |
task.validation_step(next(iterator), model, metrics=metrics) | |
model.save(os.path.join(self.get_temp_dir(), "saved_model")) | |
def test_task(self): | |
config = dual_encoder.DualEncoderConfig( | |
init_checkpoint=self.get_temp_dir(), | |
model=self.get_model_config(), | |
train_data=self._train_data_config) | |
task = dual_encoder.DualEncoderTask(config) | |
model = task.build_model() | |
metrics = task.build_metrics() | |
dataset = task.build_inputs(config.train_data) | |
iterator = iter(dataset) | |
optimizer = tf_keras.optimizers.SGD(lr=0.1) | |
task.train_step(next(iterator), model, optimizer, metrics=metrics) | |
task.validation_step(next(iterator), model, metrics=metrics) | |
# Saves a checkpoint. | |
pretrain_cfg = bert.PretrainerConfig( | |
encoder=encoders.EncoderConfig( | |
bert=encoders.BertEncoderConfig(vocab_size=30522, num_layers=1))) | |
pretrain_model = masked_lm.MaskedLMTask(None).build_model(pretrain_cfg) | |
ckpt = tf.train.Checkpoint( | |
model=pretrain_model, **pretrain_model.checkpoint_items) | |
ckpt.save(config.init_checkpoint) | |
task.initialize(model) | |
def _export_bert_tfhub(self): | |
bert_config = configs.BertConfig( | |
vocab_size=30522, | |
hidden_size=16, | |
intermediate_size=32, | |
max_position_embeddings=128, | |
num_attention_heads=2, | |
num_hidden_layers=4) | |
encoder = export_tfhub_lib.get_bert_encoder(bert_config) | |
model_checkpoint_dir = os.path.join(self.get_temp_dir(), "checkpoint") | |
checkpoint = tf.train.Checkpoint(encoder=encoder) | |
checkpoint.save(os.path.join(model_checkpoint_dir, "test")) | |
model_checkpoint_path = tf.train.latest_checkpoint(model_checkpoint_dir) | |
vocab_file = os.path.join(self.get_temp_dir(), "uncased_vocab.txt") | |
with tf.io.gfile.GFile(vocab_file, "w") as f: | |
f.write("dummy content") | |
export_path = os.path.join(self.get_temp_dir(), "hub") | |
export_tfhub_lib.export_model( | |
export_path, | |
bert_config=bert_config, | |
encoder_config=None, | |
model_checkpoint_path=model_checkpoint_path, | |
vocab_file=vocab_file, | |
do_lower_case=True, | |
with_mlm=False) | |
return export_path | |
def test_task_with_hub(self): | |
hub_module_url = self._export_bert_tfhub() | |
config = dual_encoder.DualEncoderConfig( | |
hub_module_url=hub_module_url, | |
model=self.get_model_config(), | |
train_data=self._train_data_config) | |
self._run_task(config) | |
if __name__ == "__main__": | |
tf.test.main() | |