deanna-emery's picture
updates
93528c6
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for official.nlp.tasks.electra_task."""
import tensorflow as tf, tf_keras
from official.nlp.configs import bert
from official.nlp.configs import electra
from official.nlp.configs import encoders
from official.nlp.data import pretrain_dataloader
from official.nlp.tasks import electra_task
class ElectraPretrainTaskTest(tf.test.TestCase):
def test_task(self):
config = electra_task.ElectraPretrainConfig(
model=electra.ElectraPretrainerConfig(
generator_encoder=encoders.EncoderConfig(
bert=encoders.BertEncoderConfig(vocab_size=30522,
num_layers=1)),
discriminator_encoder=encoders.EncoderConfig(
bert=encoders.BertEncoderConfig(vocab_size=30522,
num_layers=1)),
num_masked_tokens=20,
sequence_length=128,
cls_heads=[
bert.ClsHeadConfig(
inner_dim=10, num_classes=2, name="next_sentence")
]),
train_data=pretrain_dataloader.BertPretrainDataConfig(
input_path="dummy",
max_predictions_per_seq=20,
seq_length=128,
global_batch_size=1))
task = electra_task.ElectraPretrainTask(config)
model = task.build_model()
metrics = task.build_metrics()
dataset = task.build_inputs(config.train_data)
iterator = iter(dataset)
optimizer = tf_keras.optimizers.SGD(lr=0.1)
task.train_step(next(iterator), model, optimizer, metrics=metrics)
task.validation_step(next(iterator), model, metrics=metrics)
if __name__ == "__main__":
tf.test.main()