Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Masked language task.""" | |
import dataclasses | |
import tensorflow as tf, tf_keras | |
from official.core import base_task | |
from official.core import config_definitions as cfg | |
from official.core import task_factory | |
from official.modeling import tf_utils | |
from official.nlp.configs import bert | |
from official.nlp.configs import encoders | |
from official.nlp.data import data_loader_factory | |
from official.nlp.modeling import layers | |
from official.nlp.modeling import models | |
class MaskedLMConfig(cfg.TaskConfig): | |
"""The model config.""" | |
model: bert.PretrainerConfig = dataclasses.field( | |
default_factory=lambda: bert.PretrainerConfig( # pylint: disable=g-long-lambda | |
cls_heads=[ | |
bert.ClsHeadConfig( | |
inner_dim=768, | |
num_classes=2, | |
dropout_rate=0.1, | |
name='next_sentence', | |
) | |
] | |
) | |
) | |
# TODO(b/154564893): Mathematically, scale_loss should be True. | |
# However, it works better with scale_loss being False. | |
scale_loss: bool = False | |
train_data: cfg.DataConfig = dataclasses.field(default_factory=cfg.DataConfig) | |
validation_data: cfg.DataConfig = dataclasses.field( | |
default_factory=cfg.DataConfig | |
) | |
class MaskedLMTask(base_task.Task): | |
"""Task object for Mask language modeling.""" | |
def _build_encoder(self, encoder_cfg): | |
return encoders.build_encoder(encoder_cfg) | |
def build_model(self, params=None): | |
config = params or self.task_config.model | |
encoder_cfg = config.encoder | |
encoder_network = self._build_encoder(encoder_cfg) | |
cls_heads = [ | |
layers.ClassificationHead(**cfg.as_dict()) for cfg in config.cls_heads | |
] if config.cls_heads else [] | |
return models.BertPretrainerV2( | |
mlm_activation=tf_utils.get_activation(config.mlm_activation), | |
mlm_initializer=tf_keras.initializers.TruncatedNormal( | |
stddev=config.mlm_initializer_range), | |
encoder_network=encoder_network, | |
classification_heads=cls_heads) | |
def build_losses(self, | |
labels, | |
model_outputs, | |
metrics, | |
aux_losses=None) -> tf.Tensor: | |
with tf.name_scope('MaskedLMTask/losses'): | |
metrics = dict([(metric.name, metric) for metric in metrics]) | |
lm_prediction_losses = tf_keras.losses.sparse_categorical_crossentropy( | |
labels['masked_lm_ids'], | |
tf.cast(model_outputs['mlm_logits'], tf.float32), | |
from_logits=True) | |
lm_label_weights = labels['masked_lm_weights'] | |
lm_numerator_loss = tf.reduce_sum(lm_prediction_losses * | |
lm_label_weights) | |
lm_denominator_loss = tf.reduce_sum(lm_label_weights) | |
mlm_loss = tf.math.divide_no_nan(lm_numerator_loss, lm_denominator_loss) | |
metrics['lm_example_loss'].update_state(mlm_loss) | |
if 'next_sentence_labels' in labels: | |
sentence_labels = labels['next_sentence_labels'] | |
sentence_outputs = tf.cast( | |
model_outputs['next_sentence'], dtype=tf.float32) | |
sentence_loss = tf.reduce_mean( | |
tf_keras.losses.sparse_categorical_crossentropy( | |
sentence_labels, sentence_outputs, from_logits=True)) | |
metrics['next_sentence_loss'].update_state(sentence_loss) | |
total_loss = mlm_loss + sentence_loss | |
else: | |
total_loss = mlm_loss | |
if aux_losses: | |
total_loss += tf.add_n(aux_losses) | |
return total_loss | |
def build_inputs(self, params, input_context=None): | |
"""Returns tf.data.Dataset for pretraining.""" | |
if params.input_path == 'dummy': | |
def dummy_data(_): | |
dummy_ids = tf.zeros((1, params.seq_length), dtype=tf.int32) | |
dummy_lm = tf.zeros((1, params.max_predictions_per_seq), dtype=tf.int32) | |
return dict( | |
input_word_ids=dummy_ids, | |
input_mask=dummy_ids, | |
input_type_ids=dummy_ids, | |
masked_lm_positions=dummy_lm, | |
masked_lm_ids=dummy_lm, | |
masked_lm_weights=tf.cast(dummy_lm, dtype=tf.float32), | |
next_sentence_labels=tf.zeros((1, 1), dtype=tf.int32)) | |
dataset = tf.data.Dataset.range(1) | |
dataset = dataset.repeat() | |
dataset = dataset.map( | |
dummy_data, num_parallel_calls=tf.data.experimental.AUTOTUNE) | |
return dataset | |
return data_loader_factory.get_data_loader(params).load(input_context) | |
def build_metrics(self, training=None): | |
del training | |
metrics = [ | |
tf_keras.metrics.SparseCategoricalAccuracy(name='masked_lm_accuracy'), | |
tf_keras.metrics.Mean(name='lm_example_loss') | |
] | |
# TODO(hongkuny): rethink how to manage metrics creation with heads. | |
if self.task_config.train_data.use_next_sentence_label: | |
metrics.append( | |
tf_keras.metrics.SparseCategoricalAccuracy( | |
name='next_sentence_accuracy')) | |
metrics.append(tf_keras.metrics.Mean(name='next_sentence_loss')) | |
return metrics | |
def process_metrics(self, metrics, labels, model_outputs): | |
with tf.name_scope('MaskedLMTask/process_metrics'): | |
metrics = dict([(metric.name, metric) for metric in metrics]) | |
if 'masked_lm_accuracy' in metrics: | |
metrics['masked_lm_accuracy'].update_state( | |
labels['masked_lm_ids'], model_outputs['mlm_logits'], | |
labels['masked_lm_weights']) | |
if 'next_sentence_accuracy' in metrics: | |
metrics['next_sentence_accuracy'].update_state( | |
labels['next_sentence_labels'], model_outputs['next_sentence']) | |
def train_step(self, inputs, model: tf_keras.Model, | |
optimizer: tf_keras.optimizers.Optimizer, metrics): | |
"""Does forward and backward. | |
Args: | |
inputs: a dictionary of input tensors. | |
model: the model, forward pass definition. | |
optimizer: the optimizer for this training step. | |
metrics: a nested structure of metrics objects. | |
Returns: | |
A dictionary of logs. | |
""" | |
with tf.GradientTape() as tape: | |
outputs = model(inputs, training=True) | |
# Computes per-replica loss. | |
loss = self.build_losses( | |
labels=inputs, | |
model_outputs=outputs, | |
metrics=metrics, | |
aux_losses=model.losses) | |
if self.task_config.scale_loss: | |
# Scales loss as the default gradients allreduce performs sum inside the | |
# optimizer. | |
scaled_loss = loss / tf.distribute.get_strategy().num_replicas_in_sync | |
tvars = model.trainable_variables | |
if self.task_config.scale_loss: | |
grads = tape.gradient(scaled_loss, tvars) | |
else: | |
grads = tape.gradient(loss, tvars) | |
optimizer.apply_gradients(list(zip(grads, tvars))) | |
self.process_metrics(metrics, inputs, outputs) | |
return {self.loss: loss} | |
def validation_step(self, inputs, model: tf_keras.Model, metrics): | |
"""Validatation step. | |
Args: | |
inputs: a dictionary of input tensors. | |
model: the keras.Model. | |
metrics: a nested structure of metrics objects. | |
Returns: | |
A dictionary of logs. | |
""" | |
outputs = self.inference_step(inputs, model) | |
loss = self.build_losses( | |
labels=inputs, | |
model_outputs=outputs, | |
metrics=metrics, | |
aux_losses=model.losses) | |
self.process_metrics(metrics, inputs, outputs) | |
return {self.loss: loss} | |