Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for official.nlp.tasks.masked_lm.""" | |
import tensorflow as tf, tf_keras | |
from official.nlp.configs import bert | |
from official.nlp.configs import encoders | |
from official.nlp.data import pretrain_dataloader | |
from official.nlp.tasks import masked_lm | |
class MLMTaskTest(tf.test.TestCase): | |
def test_task(self): | |
config = masked_lm.MaskedLMConfig( | |
init_checkpoint=self.get_temp_dir(), | |
scale_loss=True, | |
model=bert.PretrainerConfig( | |
encoder=encoders.EncoderConfig( | |
bert=encoders.BertEncoderConfig(vocab_size=30522, | |
num_layers=1)), | |
cls_heads=[ | |
bert.ClsHeadConfig( | |
inner_dim=10, num_classes=2, name="next_sentence") | |
]), | |
train_data=pretrain_dataloader.BertPretrainDataConfig( | |
input_path="dummy", | |
max_predictions_per_seq=20, | |
seq_length=128, | |
global_batch_size=1)) | |
task = masked_lm.MaskedLMTask(config) | |
model = task.build_model() | |
metrics = task.build_metrics() | |
dataset = task.build_inputs(config.train_data) | |
iterator = iter(dataset) | |
optimizer = tf_keras.optimizers.SGD(lr=0.1) | |
task.train_step(next(iterator), model, optimizer, metrics=metrics) | |
task.validation_step(next(iterator), model, metrics=metrics) | |
# Saves a checkpoint. | |
ckpt = tf.train.Checkpoint(model=model, **model.checkpoint_items) | |
ckpt.save(config.init_checkpoint) | |
task.initialize(model) | |
if __name__ == "__main__": | |
tf.test.main() | |