Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Common utils for tasks.""" | |
from typing import Any, Callable | |
import orbit | |
import tensorflow as tf, tf_keras | |
import tensorflow_hub as hub | |
def get_encoder_from_hub(hub_model_path: str) -> tf_keras.Model: | |
"""Gets an encoder from hub. | |
Args: | |
hub_model_path: The path to the tfhub model. | |
Returns: | |
A tf_keras.Model. | |
""" | |
input_word_ids = tf_keras.layers.Input( | |
shape=(None,), dtype=tf.int32, name='input_word_ids') | |
input_mask = tf_keras.layers.Input( | |
shape=(None,), dtype=tf.int32, name='input_mask') | |
input_type_ids = tf_keras.layers.Input( | |
shape=(None,), dtype=tf.int32, name='input_type_ids') | |
hub_layer = hub.KerasLayer(hub_model_path, trainable=True) | |
output_dict = {} | |
dict_input = dict( | |
input_word_ids=input_word_ids, | |
input_mask=input_mask, | |
input_type_ids=input_type_ids) | |
output_dict = hub_layer(dict_input) | |
return tf_keras.Model(inputs=dict_input, outputs=output_dict) | |
def predict(predict_step_fn: Callable[[Any], Any], | |
aggregate_fn: Callable[[Any, Any], Any], dataset: tf.data.Dataset): | |
"""Runs prediction. | |
Args: | |
predict_step_fn: A callable such as `def predict_step(inputs)`, where | |
`inputs` are input tensors. | |
aggregate_fn: A callable such as `def aggregate_fn(state, value)`, where | |
`value` is the outputs from `predict_step_fn`. | |
dataset: A `tf.data.Dataset` object. | |
Returns: | |
The aggregated predictions. | |
""" | |
def predict_step(iterator): | |
"""Predicts on distributed devices.""" | |
outputs = tf.distribute.get_strategy().run( | |
predict_step_fn, args=(next(iterator),)) | |
return tf.nest.map_structure( | |
tf.distribute.get_strategy().experimental_local_results, outputs) | |
loop_fn = orbit.utils.create_loop_fn(predict_step) | |
# Set `num_steps` to -1 to exhaust the dataset. | |
outputs = loop_fn( | |
iter(dataset), num_steps=-1, state=None, reduce_fn=aggregate_fn) # pytype: disable=wrong-arg-types | |
return outputs | |