deanna-emery's picture
updates
93528c6
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Helper functions for the Keras implementations of models."""
import multiprocessing
import os
import time
from absl import logging
import tensorflow as tf, tf_keras
from tensorflow.python.eager import monitoring
global_batch_size_gauge = monitoring.IntGauge(
'/tensorflow/training/global_batch_size', 'TF training global batch size')
first_batch_time_gauge = monitoring.IntGauge(
'/tensorflow/training/first_batch',
'TF training start/end time for first batch (unix epoch time in us.',
'type')
first_batch_start_time = first_batch_time_gauge.get_cell('start')
first_batch_end_time = first_batch_time_gauge.get_cell('end')
class BatchTimestamp(object):
"""A structure to store batch time stamp."""
def __init__(self, batch_index, timestamp):
self.batch_index = batch_index
self.timestamp = timestamp
def __repr__(self):
return "'BatchTimestamp<batch_index: {}, timestamp: {}>'".format(
self.batch_index, self.timestamp)
class TimeHistory(tf_keras.callbacks.Callback):
"""Callback for Keras models."""
def __init__(self, batch_size, log_steps, initial_step=0, logdir=None):
"""Callback for logging performance.
Args:
batch_size: Total batch size.
log_steps: Interval of steps between logging of batch level stats.
initial_step: Optional, initial step.
logdir: Optional directory to write TensorBoard summaries.
"""
# TODO(wcromar): remove this parameter and rely on `logs` parameter of
# on_train_batch_end()
self.batch_size = batch_size
super(TimeHistory, self).__init__()
self.log_steps = log_steps
self.last_log_step = initial_step
self.steps_before_epoch = initial_step
self.steps_in_epoch = 0
self.start_time = None
global_batch_size_gauge.get_cell().set(batch_size)
if logdir:
self.summary_writer = tf.summary.create_file_writer(logdir)
else:
self.summary_writer = None
# Logs start of step 1 then end of each step based on log_steps interval.
self.timestamp_log = []
# Records the time each epoch takes to run from start to finish of epoch.
self.epoch_runtime_log = []
@property
def global_steps(self):
"""The current 1-indexed global step."""
return self.steps_before_epoch + self.steps_in_epoch
@property
def average_steps_per_second(self):
"""The average training steps per second across all epochs."""
return self.global_steps / sum(self.epoch_runtime_log)
@property
def average_examples_per_second(self):
"""The average number of training examples per second across all epochs."""
return self.average_steps_per_second * self.batch_size
def get_examples_per_sec(self, warmup=1):
"""Calculates examples/sec through timestamp_log and skip warmup period."""
# First entry in timestamp_log is the start of the step 1. The rest of the
# entries are the end of each step recorded.
time_log = self.timestamp_log
seconds = time_log[-1].timestamp - time_log[warmup].timestamp
steps = time_log[-1].batch_index - time_log[warmup].batch_index
return self.batch_size * steps / seconds
def get_startup_time(self, start_time_sec):
return self.timestamp_log[0].timestamp - start_time_sec
def on_train_end(self, logs=None):
self.train_finish_time = time.time()
if self.summary_writer:
self.summary_writer.flush()
def on_epoch_begin(self, epoch, logs=None):
self.epoch_start = time.time()
def on_batch_begin(self, batch, logs=None):
if not self.start_time:
self.start_time = time.time()
if not first_batch_start_time.value():
first_batch_start_time.set(int(self.start_time * 1000000))
# Record the timestamp of the first global step
if not self.timestamp_log:
self.timestamp_log.append(
BatchTimestamp(self.global_steps, self.start_time))
def on_batch_end(self, batch, logs=None):
"""Records elapse time of the batch and calculates examples per second."""
if not first_batch_end_time.value():
first_batch_end_time.set(int(time.time() * 1000000))
self.steps_in_epoch = batch + 1
steps_since_last_log = self.global_steps - self.last_log_step
if steps_since_last_log >= self.log_steps:
now = time.time()
elapsed_time = now - self.start_time
steps_per_second = steps_since_last_log / elapsed_time
examples_per_second = steps_per_second * self.batch_size
self.timestamp_log.append(BatchTimestamp(self.global_steps, now))
logging.info(
'TimeHistory: %.2f seconds, %.2f examples/second between steps %d '
'and %d', elapsed_time, examples_per_second, self.last_log_step,
self.global_steps)
if self.summary_writer:
with self.summary_writer.as_default():
tf.summary.scalar('steps_per_second', steps_per_second,
self.global_steps)
tf.summary.scalar('examples_per_second', examples_per_second,
self.global_steps)
self.last_log_step = self.global_steps
self.start_time = None
def on_epoch_end(self, epoch, logs=None):
epoch_run_time = time.time() - self.epoch_start
self.epoch_runtime_log.append(epoch_run_time)
self.steps_before_epoch += self.steps_in_epoch
self.steps_in_epoch = 0
class SimpleCheckpoint(tf_keras.callbacks.Callback):
"""Keras callback to save tf.train.Checkpoints."""
def __init__(self, checkpoint_manager):
super(SimpleCheckpoint, self).__init__()
self.checkpoint_manager = checkpoint_manager
def on_epoch_end(self, epoch, logs=None):
step_counter = self.checkpoint_manager._step_counter.numpy() # pylint: disable=protected-access
self.checkpoint_manager.save(checkpoint_number=step_counter)
def set_session_config(enable_xla=False):
"""Sets the session config."""
if enable_xla:
tf.config.optimizer.set_jit(True)
# TODO(hongkuny): remove set_config_v2 globally.
set_config_v2 = set_session_config
def set_gpu_thread_mode_and_count(gpu_thread_mode, datasets_num_private_threads,
num_gpus, per_gpu_thread_count):
"""Set GPU thread mode and count, and adjust dataset threads count."""
cpu_count = multiprocessing.cpu_count()
logging.info('Logical CPU cores: %s', cpu_count)
# Allocate private thread pool for each GPU to schedule and launch kernels
per_gpu_thread_count = per_gpu_thread_count or 2
os.environ['TF_GPU_THREAD_MODE'] = gpu_thread_mode
os.environ['TF_GPU_THREAD_COUNT'] = str(per_gpu_thread_count)
logging.info('TF_GPU_THREAD_COUNT: %s', os.environ['TF_GPU_THREAD_COUNT'])
logging.info('TF_GPU_THREAD_MODE: %s', os.environ['TF_GPU_THREAD_MODE'])
# Limit data preprocessing threadpool to CPU cores minus number of total GPU
# private threads and memory copy threads.
total_gpu_thread_count = per_gpu_thread_count * num_gpus
num_runtime_threads = num_gpus
if not datasets_num_private_threads:
datasets_num_private_threads = min(
cpu_count - total_gpu_thread_count - num_runtime_threads, num_gpus * 8)
logging.info('Set datasets_num_private_threads to %s',
datasets_num_private_threads)