deanna-emery's picture
updates
93528c6
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""RetinaNet configuration definition."""
import dataclasses
import os
from typing import Optional, List, Sequence, Union
from official.core import config_definitions as cfg
from official.core import exp_factory
from official.modeling import hyperparams
from official.modeling import optimization
from official.modeling.hyperparams import base_config
from official.vision.configs import common
from official.vision.configs import decoders
from official.vision.configs import backbones
# pylint: disable=missing-class-docstring
# Keep for backward compatibility.
@dataclasses.dataclass
class TfExampleDecoder(common.TfExampleDecoder):
"""A simple TF Example decoder config."""
# Keep for backward compatibility.
@dataclasses.dataclass
class TfExampleDecoderLabelMap(common.TfExampleDecoderLabelMap):
"""TF Example decoder with label map config."""
# Keep for backward compatibility.
@dataclasses.dataclass
class DataDecoder(common.DataDecoder):
"""Data decoder config."""
@dataclasses.dataclass
class Parser(hyperparams.Config):
num_channels: int = 3
match_threshold: float = 0.5
unmatched_threshold: float = 0.5
aug_rand_hflip: bool = False
aug_scale_min: float = 1.0
aug_scale_max: float = 1.0
skip_crowd_during_training: bool = True
max_num_instances: int = 100
# Can choose AutoAugment and RandAugment.
aug_type: Optional[common.Augmentation] = None
pad: bool = True
keep_aspect_ratio: bool = True
# Keep for backward compatibility. Not used.
aug_policy: Optional[str] = None
@dataclasses.dataclass
class DataConfig(cfg.DataConfig):
"""Input config for training.
Attributes:
weights: Sampling weights for each corresponding input_path. If used, then
input_path must be a config with matching keys.
"""
input_path: Union[Sequence[str], str, base_config.Config] = ''
weights: Optional[base_config.Config] = None
global_batch_size: int = 0
is_training: bool = False
dtype: str = 'bfloat16'
decoder: common.DataDecoder = dataclasses.field(
default_factory=common.DataDecoder
)
parser: Parser = dataclasses.field(default_factory=Parser)
shuffle_buffer_size: int = 10000
file_type: str = 'tfrecord'
@dataclasses.dataclass
class Anchor(hyperparams.Config):
num_scales: int = 3
aspect_ratios: List[float] = dataclasses.field(
default_factory=lambda: [0.5, 1.0, 2.0])
anchor_size: float = 4.0
@dataclasses.dataclass
class Losses(hyperparams.Config):
loss_weight: float = 1.0
focal_loss_alpha: float = 0.25
focal_loss_gamma: float = 1.5
huber_loss_delta: float = 0.1
box_loss_weight: int = 50
l2_weight_decay: float = 0.0
@dataclasses.dataclass
class AttributeHead(hyperparams.Config):
name: str = ''
type: str = 'regression'
size: int = 1
# Attribute heads of the same "prediction_tower_name" will share the same
# prediction tower. If unspecified, they will use their individual prediction
# tower.
prediction_tower_name: str = ''
# If `num_convs` or `num_filters` are not provided, it will use the parameters
# from RetinaNetHead. When several attributes share the head through setting
# the same `prediction_tower_name`, we only respect `num_convs` and
# `num_filters` from the first attribute that use the shared prediction tower
# name.
num_convs: Optional[int] = None
num_filters: Optional[int] = None
@dataclasses.dataclass
class RetinaNetHead(hyperparams.Config):
num_convs: int = 4
num_filters: int = 256
use_separable_conv: bool = False
attribute_heads: List[AttributeHead] = dataclasses.field(default_factory=list)
share_classification_heads: bool = False
share_level_convs: Optional[bool] = True
@dataclasses.dataclass
class DetectionGenerator(hyperparams.Config):
apply_nms: bool = True
pre_nms_top_k: int = 5000
pre_nms_score_threshold: float = 0.05
nms_iou_threshold: float = 0.5
max_num_detections: int = 100
nms_version: str = 'v2' # `v2`, `v1`, `batched`, or `tflite`.
use_cpu_nms: bool = False
soft_nms_sigma: Optional[float] = None # Only works when nms_version='v1'.
# When nms_version = `tflite`, values from tflite_post_processing need to be
# specified. They are compatible with the input arguments used by TFLite
# custom NMS op and override above parameters.
tflite_post_processing: common.TFLitePostProcessingConfig = dataclasses.field(
default_factory=common.TFLitePostProcessingConfig
)
# Return decoded boxes/scores even if apply_nms is set `True`.
return_decoded: Optional[bool] = None
# Only works when nms_version='v2'.
use_class_agnostic_nms: Optional[bool] = False
# Weights or scales when encode and decode boxes coordinates. For Faster RCNN,
# the open-source implementation recommends using [10.0, 10.0, 5.0, 5.0].
box_coder_weights: Optional[List[float]] = None
@dataclasses.dataclass
class RetinaNet(hyperparams.Config):
num_classes: int = 0
input_size: List[int] = dataclasses.field(default_factory=list)
min_level: int = 3
max_level: int = 7
anchor: Anchor = dataclasses.field(default_factory=Anchor)
backbone: backbones.Backbone = dataclasses.field(
default_factory=lambda: backbones.Backbone( # pylint: disable=g-long-lambda
type='resnet', resnet=backbones.ResNet()
)
)
decoder: decoders.Decoder = dataclasses.field(
default_factory=lambda: decoders.Decoder(type='fpn', fpn=decoders.FPN())
)
head: RetinaNetHead = dataclasses.field(default_factory=RetinaNetHead)
detection_generator: DetectionGenerator = dataclasses.field(
default_factory=DetectionGenerator
)
norm_activation: common.NormActivation = dataclasses.field(
default_factory=common.NormActivation
)
@dataclasses.dataclass
class ExportConfig(hyperparams.Config):
output_normalized_coordinates: bool = False
cast_num_detections_to_float: bool = False
cast_detection_classes_to_float: bool = False
output_intermediate_features: bool = False
@dataclasses.dataclass
class RetinaNetTask(cfg.TaskConfig):
model: RetinaNet = dataclasses.field(default_factory=RetinaNet)
train_data: DataConfig = dataclasses.field(
default_factory=lambda: DataConfig(is_training=True)
)
validation_data: DataConfig = dataclasses.field(
default_factory=lambda: DataConfig(is_training=False)
)
losses: Losses = dataclasses.field(default_factory=Losses)
init_checkpoint: Optional[str] = None
init_checkpoint_modules: Union[
str, List[str]] = 'all' # all, backbone, and/or decoder
annotation_file: Optional[str] = None
per_category_metrics: bool = False
export_config: ExportConfig = dataclasses.field(default_factory=ExportConfig)
# If set, the COCO metrics will be computed.
use_coco_metrics: bool = True
# If set, the Waymo Open Dataset evaluator would be used.
use_wod_metrics: bool = False
# If set, freezes the backbone during training.
# TODO(crisnv) Add paper link when available.
freeze_backbone: bool = False
# Sets maximum number of boxes to be evaluated by coco eval api.
max_num_eval_detections: int = 100
@exp_factory.register_config_factory('retinanet')
def retinanet() -> cfg.ExperimentConfig:
"""RetinaNet general config."""
return cfg.ExperimentConfig(
task=RetinaNetTask(),
restrictions=[
'task.train_data.is_training != None',
'task.validation_data.is_training != None'
])
COCO_INPUT_PATH_BASE = 'coco'
COCO_TRAIN_EXAMPLES = 118287
COCO_VAL_EXAMPLES = 5000
@exp_factory.register_config_factory('retinanet_resnetfpn_coco')
def retinanet_resnetfpn_coco() -> cfg.ExperimentConfig:
"""COCO object detection with RetinaNet."""
train_batch_size = 256
eval_batch_size = 8
steps_per_epoch = COCO_TRAIN_EXAMPLES // train_batch_size
config = cfg.ExperimentConfig(
runtime=cfg.RuntimeConfig(mixed_precision_dtype='bfloat16'),
task=RetinaNetTask(
init_checkpoint='gs://cloud-tpu-checkpoints/vision-2.0/resnet50_imagenet/ckpt-28080',
init_checkpoint_modules='backbone',
annotation_file=os.path.join(COCO_INPUT_PATH_BASE,
'instances_val2017.json'),
model=RetinaNet(
num_classes=91,
input_size=[640, 640, 3],
norm_activation=common.NormActivation(use_sync_bn=False),
min_level=3,
max_level=7),
losses=Losses(l2_weight_decay=1e-4),
train_data=DataConfig(
input_path=os.path.join(COCO_INPUT_PATH_BASE, 'train*'),
is_training=True,
global_batch_size=train_batch_size,
parser=Parser(
aug_rand_hflip=True, aug_scale_min=0.8, aug_scale_max=1.2)),
validation_data=DataConfig(
input_path=os.path.join(COCO_INPUT_PATH_BASE, 'val*'),
is_training=False,
global_batch_size=eval_batch_size)),
trainer=cfg.TrainerConfig(
train_steps=72 * steps_per_epoch,
validation_steps=COCO_VAL_EXAMPLES // eval_batch_size,
validation_interval=steps_per_epoch,
steps_per_loop=steps_per_epoch,
summary_interval=steps_per_epoch,
checkpoint_interval=steps_per_epoch,
optimizer_config=optimization.OptimizationConfig({
'optimizer': {
'type': 'sgd',
'sgd': {
'momentum': 0.9
}
},
'learning_rate': {
'type': 'stepwise',
'stepwise': {
'boundaries': [
57 * steps_per_epoch, 67 * steps_per_epoch
],
'values': [
0.32 * train_batch_size / 256.0,
0.032 * train_batch_size / 256.0,
0.0032 * train_batch_size / 256.0
],
}
},
'warmup': {
'type': 'linear',
'linear': {
'warmup_steps': 500,
'warmup_learning_rate': 0.0067
}
}
})),
restrictions=[
'task.train_data.is_training != None',
'task.validation_data.is_training != None'
])
return config
@exp_factory.register_config_factory('retinanet_spinenet_coco')
def retinanet_spinenet_coco() -> cfg.ExperimentConfig:
"""COCO object detection with RetinaNet using SpineNet backbone."""
train_batch_size = 256
eval_batch_size = 8
steps_per_epoch = COCO_TRAIN_EXAMPLES // train_batch_size
input_size = 640
config = cfg.ExperimentConfig(
runtime=cfg.RuntimeConfig(mixed_precision_dtype='float32'),
task=RetinaNetTask(
annotation_file=os.path.join(COCO_INPUT_PATH_BASE,
'instances_val2017.json'),
model=RetinaNet(
backbone=backbones.Backbone(
type='spinenet',
spinenet=backbones.SpineNet(
model_id='49',
stochastic_depth_drop_rate=0.2,
min_level=3,
max_level=7)),
decoder=decoders.Decoder(
type='identity', identity=decoders.Identity()),
anchor=Anchor(anchor_size=3),
norm_activation=common.NormActivation(
use_sync_bn=True, activation='swish'),
num_classes=91,
input_size=[input_size, input_size, 3],
min_level=3,
max_level=7),
losses=Losses(l2_weight_decay=4e-5),
train_data=DataConfig(
input_path=os.path.join(COCO_INPUT_PATH_BASE, 'train*'),
is_training=True,
global_batch_size=train_batch_size,
parser=Parser(
aug_rand_hflip=True, aug_scale_min=0.1, aug_scale_max=2.0)),
validation_data=DataConfig(
input_path=os.path.join(COCO_INPUT_PATH_BASE, 'val*'),
is_training=False,
global_batch_size=eval_batch_size)),
trainer=cfg.TrainerConfig(
train_steps=500 * steps_per_epoch,
validation_steps=COCO_VAL_EXAMPLES // eval_batch_size,
validation_interval=steps_per_epoch,
steps_per_loop=steps_per_epoch,
summary_interval=steps_per_epoch,
checkpoint_interval=steps_per_epoch,
optimizer_config=optimization.OptimizationConfig({
'optimizer': {
'type': 'sgd',
'sgd': {
'momentum': 0.9
}
},
'learning_rate': {
'type': 'stepwise',
'stepwise': {
'boundaries': [
475 * steps_per_epoch, 490 * steps_per_epoch
],
'values': [
0.32 * train_batch_size / 256.0,
0.032 * train_batch_size / 256.0,
0.0032 * train_batch_size / 256.0
],
}
},
'warmup': {
'type': 'linear',
'linear': {
'warmup_steps': 2000,
'warmup_learning_rate': 0.0067
}
}
})),
restrictions=[
'task.train_data.is_training != None',
'task.validation_data.is_training != None',
'task.model.min_level == task.model.backbone.spinenet.min_level',
'task.model.max_level == task.model.backbone.spinenet.max_level',
])
return config
@exp_factory.register_config_factory('retinanet_mobile_coco')
def retinanet_spinenet_mobile_coco() -> cfg.ExperimentConfig:
"""COCO object detection with mobile RetinaNet."""
train_batch_size = 256
eval_batch_size = 8
steps_per_epoch = COCO_TRAIN_EXAMPLES // train_batch_size
input_size = 384
config = cfg.ExperimentConfig(
runtime=cfg.RuntimeConfig(mixed_precision_dtype='float32'),
task=RetinaNetTask(
annotation_file=os.path.join(COCO_INPUT_PATH_BASE,
'instances_val2017.json'),
model=RetinaNet(
backbone=backbones.Backbone(
type='spinenet_mobile',
spinenet_mobile=backbones.SpineNetMobile(
model_id='49',
stochastic_depth_drop_rate=0.2,
min_level=3,
max_level=7,
use_keras_upsampling_2d=False)),
decoder=decoders.Decoder(
type='identity', identity=decoders.Identity()),
head=RetinaNetHead(num_filters=48, use_separable_conv=True),
anchor=Anchor(anchor_size=3),
norm_activation=common.NormActivation(
use_sync_bn=True, activation='swish'),
num_classes=91,
input_size=[input_size, input_size, 3],
min_level=3,
max_level=7),
losses=Losses(l2_weight_decay=3e-5),
train_data=DataConfig(
input_path=os.path.join(COCO_INPUT_PATH_BASE, 'train*'),
is_training=True,
global_batch_size=train_batch_size,
parser=Parser(
aug_rand_hflip=True, aug_scale_min=0.1, aug_scale_max=2.0)),
validation_data=DataConfig(
input_path=os.path.join(COCO_INPUT_PATH_BASE, 'val*'),
is_training=False,
global_batch_size=eval_batch_size)),
trainer=cfg.TrainerConfig(
train_steps=600 * steps_per_epoch,
validation_steps=COCO_VAL_EXAMPLES // eval_batch_size,
validation_interval=steps_per_epoch,
steps_per_loop=steps_per_epoch,
summary_interval=steps_per_epoch,
checkpoint_interval=steps_per_epoch,
optimizer_config=optimization.OptimizationConfig({
'optimizer': {
'type': 'sgd',
'sgd': {
'momentum': 0.9
}
},
'learning_rate': {
'type': 'stepwise',
'stepwise': {
'boundaries': [
575 * steps_per_epoch, 590 * steps_per_epoch
],
'values': [
0.32 * train_batch_size / 256.0,
0.032 * train_batch_size / 256.0,
0.0032 * train_batch_size / 256.0
],
}
},
'warmup': {
'type': 'linear',
'linear': {
'warmup_steps': 2000,
'warmup_learning_rate': 0.0067
}
}
})),
restrictions=[
'task.train_data.is_training != None',
'task.validation_data.is_training != None',
])
return config