Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for image_utils.""" | |
import imghdr | |
from unittest import mock | |
from absl.testing import parameterized | |
import tensorflow as tf, tf_keras | |
from official.vision.data import fake_feature_generator | |
from official.vision.data import image_utils | |
class ImageUtilsTest(parameterized.TestCase, tf.test.TestCase): | |
def test_encode_image_then_decode_image(self, height, width, num_channels, | |
image_format): | |
image_np = fake_feature_generator.generate_image_np(height, width, | |
num_channels) | |
image_str = image_utils.encode_image(image_np, image_format) | |
actual_image_np = image_utils.decode_image(image_str) | |
# JPEG encoding does not keep the pixel value. | |
if image_format != 'JPEG': | |
self.assertAllClose(actual_image_np, image_np) | |
self.assertEqual(actual_image_np.shape, image_np.shape) | |
def test_encode_raw_image_then_decode_raw_image(self, height, width, | |
num_channels, image_dtype): | |
image_np = fake_feature_generator.generate_image_np(height, width, | |
num_channels) | |
image_np = image_np.astype(image_dtype) | |
image_str = image_utils.encode_image(image_np, 'RAW') | |
actual_image_np = image_utils.decode_image(image_str, 'RAW', image_dtype) | |
actual_image_np = actual_image_np.reshape([height, width, num_channels]) | |
self.assertAllClose(actual_image_np, image_np) | |
self.assertEqual(actual_image_np.shape, image_np.shape) | |
def test_encode_image_then_decode_image_metadata(self, height, width, | |
num_channels, image_format): | |
image_np = fake_feature_generator.generate_image_np(height, width, | |
num_channels) | |
image_str = image_utils.encode_image(image_np, image_format) | |
(actual_height, actual_width, actual_num_channels, actual_format) = ( | |
image_utils.decode_image_metadata(image_str)) | |
self.assertEqual(actual_height, height) | |
self.assertEqual(actual_width, width) | |
self.assertEqual(actual_num_channels, num_channels) | |
self.assertEqual(actual_format, image_format.upper()) | |
def test_encode_image_raise_error_with_invalid_image_format(self): | |
with self.assertRaisesRegex(ValueError, 'Image format is invalid: foo'): | |
image_np = fake_feature_generator.generate_image_np(2, 2, 1) | |
image_utils.encode_image(image_np, 'foo') | |
def test_decode_image_raise_error_with_invalid_image_format(self, _): | |
image_np = fake_feature_generator.generate_image_np(1, 1, 3) | |
image_str = image_utils.encode_image(image_np, 'PNG') | |
with self.assertRaisesRegex(ValueError, 'Image format is invalid: foo'): | |
image_utils.decode_image_metadata(image_str) | |
if __name__ == '__main__': | |
tf.test.main() | |