deanna-emery's picture
updates
93528c6
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Build classification models."""
from typing import Any, Mapping, Optional
# Import libraries
import tensorflow as tf, tf_keras
layers = tf_keras.layers
@tf_keras.utils.register_keras_serializable(package='Vision')
class ClassificationModel(tf_keras.Model):
"""A classification class builder."""
def __init__(
self,
backbone: tf_keras.Model,
num_classes: int,
input_specs: tf_keras.layers.InputSpec = layers.InputSpec(
shape=[None, None, None, 3]),
dropout_rate: float = 0.0,
kernel_initializer: str = 'random_uniform',
kernel_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
bias_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
add_head_batch_norm: bool = False,
use_sync_bn: bool = False,
norm_momentum: float = 0.99,
norm_epsilon: float = 0.001,
skip_logits_layer: bool = False,
**kwargs):
"""Classification initialization function.
Args:
backbone: a backbone network.
num_classes: `int` number of classes in classification task.
input_specs: `tf_keras.layers.InputSpec` specs of the input tensor.
dropout_rate: `float` rate for dropout regularization.
kernel_initializer: kernel initializer for the dense layer.
kernel_regularizer: tf_keras.regularizers.Regularizer object. Default to
None.
bias_regularizer: tf_keras.regularizers.Regularizer object. Default to
None.
add_head_batch_norm: `bool` whether to add a batch normalization layer
before pool.
use_sync_bn: `bool` if True, use synchronized batch normalization.
norm_momentum: `float` normalization momentum for the moving average.
norm_epsilon: `float` small float added to variance to avoid dividing by
zero.
skip_logits_layer: `bool`, whether to skip the prediction layer.
**kwargs: keyword arguments to be passed.
"""
norm = tf_keras.layers.BatchNormalization
axis = -1 if tf_keras.backend.image_data_format() == 'channels_last' else 1
inputs = tf_keras.Input(shape=input_specs.shape[1:], name=input_specs.name)
endpoints = backbone(inputs)
x = endpoints[max(endpoints.keys())]
if add_head_batch_norm:
x = norm(
axis=axis,
momentum=norm_momentum,
epsilon=norm_epsilon,
synchronized=use_sync_bn,
)(x)
# Depending on the backbone type, backbone's output can be
# [batch_size, height, weight, channel_size] or
# [batch_size, token_size, hidden_size].
if len(x.shape) == 4:
x = tf_keras.layers.GlobalAveragePooling2D()(x)
elif len(x.shape) == 3:
x = tf_keras.layers.GlobalAveragePooling1D()(x)
if not skip_logits_layer:
x = tf_keras.layers.Dropout(dropout_rate)(x)
x = tf_keras.layers.Dense(
num_classes,
kernel_initializer=kernel_initializer,
kernel_regularizer=kernel_regularizer,
bias_regularizer=bias_regularizer)(
x)
super(ClassificationModel, self).__init__(
inputs=inputs, outputs=x, **kwargs)
self._config_dict = {
'backbone': backbone,
'num_classes': num_classes,
'input_specs': input_specs,
'dropout_rate': dropout_rate,
'kernel_initializer': kernel_initializer,
'kernel_regularizer': kernel_regularizer,
'bias_regularizer': bias_regularizer,
'add_head_batch_norm': add_head_batch_norm,
'use_sync_bn': use_sync_bn,
'norm_momentum': norm_momentum,
'norm_epsilon': norm_epsilon,
}
self._input_specs = input_specs
self._kernel_regularizer = kernel_regularizer
self._bias_regularizer = bias_regularizer
self._backbone = backbone
self._norm = norm
@property
def checkpoint_items(self) -> Mapping[str, tf_keras.Model]:
"""Returns a dictionary of items to be additionally checkpointed."""
return dict(backbone=self.backbone)
@property
def backbone(self) -> tf_keras.Model:
return self._backbone
def get_config(self) -> Mapping[str, Any]:
return self._config_dict
@classmethod
def from_config(cls, config, custom_objects=None):
return cls(**config)