deanna-emery's picture
updates
93528c6
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for RetinaNet models."""
# Import libraries
from absl.testing import parameterized
import numpy as np
import tensorflow as tf, tf_keras
from tensorflow.python.distribute import combinations
from tensorflow.python.distribute import strategy_combinations
from official.vision.modeling import retinanet_model
from official.vision.modeling.backbones import resnet
from official.vision.modeling.decoders import fpn
from official.vision.modeling.heads import dense_prediction_heads
from official.vision.modeling.layers import detection_generator
from official.vision.ops import anchor
class RetinaNetTest(parameterized.TestCase, tf.test.TestCase):
@parameterized.parameters(
{
'use_separable_conv': True,
'build_anchor_boxes': True,
'is_training': False,
'has_att_heads': False,
},
{
'use_separable_conv': False,
'build_anchor_boxes': True,
'is_training': False,
'has_att_heads': False,
},
{
'use_separable_conv': False,
'build_anchor_boxes': False,
'is_training': False,
'has_att_heads': False,
},
{
'use_separable_conv': False,
'build_anchor_boxes': False,
'is_training': True,
'has_att_heads': False,
},
{
'use_separable_conv': False,
'build_anchor_boxes': True,
'is_training': True,
'has_att_heads': True,
},
{
'use_separable_conv': False,
'build_anchor_boxes': True,
'is_training': False,
'has_att_heads': True,
},
)
def test_build_model(self, use_separable_conv, build_anchor_boxes,
is_training, has_att_heads):
num_classes = 3
min_level = 3
max_level = 7
num_scales = 3
aspect_ratios = [1.0]
anchor_size = 3
fpn_num_filters = 256
head_num_convs = 4
head_num_filters = 256
num_anchors_per_location = num_scales * len(aspect_ratios)
image_size = 384
images = np.random.rand(2, image_size, image_size, 3)
image_shape = np.array([[image_size, image_size], [image_size, image_size]])
if build_anchor_boxes:
anchor_boxes = anchor.Anchor(
min_level=min_level,
max_level=max_level,
num_scales=num_scales,
aspect_ratios=aspect_ratios,
anchor_size=anchor_size,
image_size=(image_size, image_size)).multilevel_boxes
for l in anchor_boxes:
anchor_boxes[l] = tf.tile(
tf.expand_dims(anchor_boxes[l], axis=0), [2, 1, 1, 1])
else:
anchor_boxes = None
if has_att_heads:
attribute_heads = [
dict(
name='depth', type='regression', size=1, prediction_tower_name='')
]
else:
attribute_heads = None
backbone = resnet.ResNet(model_id=50)
decoder = fpn.FPN(
input_specs=backbone.output_specs,
min_level=min_level,
max_level=max_level,
num_filters=fpn_num_filters,
use_separable_conv=use_separable_conv)
head = dense_prediction_heads.RetinaNetHead(
min_level=min_level,
max_level=max_level,
num_classes=num_classes,
attribute_heads=attribute_heads,
num_anchors_per_location=num_anchors_per_location,
use_separable_conv=use_separable_conv,
num_convs=head_num_convs,
num_filters=head_num_filters)
generator = detection_generator.MultilevelDetectionGenerator(
max_num_detections=10)
model = retinanet_model.RetinaNetModel(
backbone=backbone,
decoder=decoder,
head=head,
detection_generator=generator,
min_level=min_level,
max_level=max_level,
num_scales=num_scales,
aspect_ratios=aspect_ratios,
anchor_size=anchor_size)
_ = model(images, image_shape, anchor_boxes, training=is_training)
@combinations.generate(
combinations.combine(
strategy=[
strategy_combinations.cloud_tpu_strategy,
strategy_combinations.one_device_strategy_gpu,
],
image_size=[
(128, 128),
],
training=[True, False],
has_att_heads=[True, False],
output_intermediate_features=[True, False],
soft_nms_sigma=[None, 0.0, 0.1],
))
def test_forward(self, strategy, image_size, training, has_att_heads,
output_intermediate_features, soft_nms_sigma):
"""Test for creation of a R50-FPN RetinaNet."""
tf_keras.backend.set_image_data_format('channels_last')
num_classes = 3
min_level = 3
max_level = 7
num_scales = 3
aspect_ratios = [1.0]
num_anchors_per_location = num_scales * len(aspect_ratios)
images = np.random.rand(2, image_size[0], image_size[1], 3)
image_shape = np.array(
[[image_size[0], image_size[1]], [image_size[0], image_size[1]]])
with strategy.scope():
anchor_gen = anchor.build_anchor_generator(
min_level=min_level,
max_level=max_level,
num_scales=num_scales,
aspect_ratios=aspect_ratios,
anchor_size=3)
anchor_boxes = anchor_gen(image_size)
for l in anchor_boxes:
anchor_boxes[l] = tf.tile(
tf.expand_dims(anchor_boxes[l], axis=0), [2, 1, 1, 1])
backbone = resnet.ResNet(model_id=50)
decoder = fpn.FPN(
input_specs=backbone.output_specs,
min_level=min_level,
max_level=max_level)
if has_att_heads:
attribute_heads = [
dict(
name='depth',
type='regression',
size=1,
prediction_tower_name='')
]
else:
attribute_heads = None
head = dense_prediction_heads.RetinaNetHead(
min_level=min_level,
max_level=max_level,
num_classes=num_classes,
attribute_heads=attribute_heads,
num_anchors_per_location=num_anchors_per_location)
generator = detection_generator.MultilevelDetectionGenerator(
max_num_detections=10,
nms_version='v1',
use_cpu_nms=soft_nms_sigma is not None,
soft_nms_sigma=soft_nms_sigma)
model = retinanet_model.RetinaNetModel(
backbone=backbone,
decoder=decoder,
head=head,
detection_generator=generator)
model_outputs = model(
images,
image_shape,
anchor_boxes,
output_intermediate_features=output_intermediate_features,
training=training)
if training:
cls_outputs = model_outputs['cls_outputs']
box_outputs = model_outputs['box_outputs']
for level in range(min_level, max_level + 1):
self.assertIn(str(level), cls_outputs)
self.assertIn(str(level), box_outputs)
self.assertAllEqual([
2,
image_size[0] // 2**level,
image_size[1] // 2**level,
num_classes * num_anchors_per_location
], cls_outputs[str(level)].numpy().shape)
self.assertAllEqual([
2,
image_size[0] // 2**level,
image_size[1] // 2**level,
4 * num_anchors_per_location
], box_outputs[str(level)].numpy().shape)
if has_att_heads:
att_outputs = model_outputs['attribute_outputs']
for att in att_outputs.values():
self.assertAllEqual([
2, image_size[0] // 2**level, image_size[1] // 2**level,
1 * num_anchors_per_location
], att[str(level)].numpy().shape)
else:
self.assertIn('detection_boxes', model_outputs)
self.assertIn('detection_scores', model_outputs)
self.assertIn('detection_classes', model_outputs)
self.assertIn('num_detections', model_outputs)
self.assertAllEqual(
[2, 10, 4], model_outputs['detection_boxes'].numpy().shape)
self.assertAllEqual(
[2, 10], model_outputs['detection_scores'].numpy().shape)
self.assertAllEqual(
[2, 10], model_outputs['detection_classes'].numpy().shape)
self.assertAllEqual(
[2,], model_outputs['num_detections'].numpy().shape)
if has_att_heads:
self.assertIn('detection_attributes', model_outputs)
self.assertAllEqual(
[2, 10, 1],
model_outputs['detection_attributes']['depth'].numpy().shape)
if output_intermediate_features:
for l in range(2, 6):
self.assertIn('backbone_{}'.format(l), model_outputs)
self.assertAllEqual([
2, image_size[0] // 2**l, image_size[1] // 2**l,
backbone.output_specs[str(l)].as_list()[-1]
], model_outputs['backbone_{}'.format(l)].numpy().shape)
for l in range(min_level, max_level + 1):
self.assertIn('decoder_{}'.format(l), model_outputs)
self.assertAllEqual([
2, image_size[0] // 2**l, image_size[1] // 2**l,
decoder.output_specs[str(l)].as_list()[-1]
], model_outputs['decoder_{}'.format(l)].numpy().shape)
def test_serialize_deserialize(self):
"""Validate the network can be serialized and deserialized."""
num_classes = 3
min_level = 3
max_level = 7
num_scales = 3
aspect_ratios = [1.0]
num_anchors_per_location = num_scales * len(aspect_ratios)
backbone = resnet.ResNet(model_id=50)
decoder = fpn.FPN(
input_specs=backbone.output_specs,
min_level=min_level,
max_level=max_level)
head = dense_prediction_heads.RetinaNetHead(
min_level=min_level,
max_level=max_level,
num_classes=num_classes,
num_anchors_per_location=num_anchors_per_location)
generator = detection_generator.MultilevelDetectionGenerator(
max_num_detections=10)
model = retinanet_model.RetinaNetModel(
backbone=backbone,
decoder=decoder,
head=head,
detection_generator=generator,
min_level=min_level,
max_level=max_level,
num_scales=num_scales,
aspect_ratios=aspect_ratios,
anchor_size=3)
config = model.get_config()
new_model = retinanet_model.RetinaNetModel.from_config(config)
# Validate that the config can be forced to JSON.
_ = new_model.to_json()
# If the serialization was successful, the new config should match the old.
self.assertAllEqual(model.get_config(), new_model.get_config())
if __name__ == '__main__':
tf.test.main()