Spaces:
Runtime error
Runtime error
deanna-emery
commited on
Commit
·
dbc6d1e
1
Parent(s):
aa022a4
updates
Browse files
app.py
CHANGED
@@ -2,6 +2,9 @@ import cv2
|
|
2 |
import numpy as np
|
3 |
import gradio as gr
|
4 |
|
|
|
|
|
|
|
5 |
import tensorflow as tf, tf_keras
|
6 |
import tensorflow_hub as hub
|
7 |
from transformers import AutoTokenizer, TFAutoModelForSeq2SeqLM
|
@@ -68,11 +71,11 @@ def translate(video_file):
|
|
68 |
|
69 |
translation = tokenizer.batch_decode(tokens, skip_special_tokens=True)
|
70 |
|
|
|
71 |
return {"translation":translation}
|
72 |
|
73 |
# Gradio App config
|
74 |
title = "ASL Translation (MoViNet + T5)"
|
75 |
-
|
76 |
examples = [
|
77 |
["videos/My_second_ASL_professors_name_was_Will_White.mp4",],
|
78 |
['videos/You_are_my_sunshine.mp4'],
|
@@ -81,31 +84,19 @@ examples = [
|
|
81 |
['videos/all.mp4']
|
82 |
['videos/white.mp4']
|
83 |
]
|
84 |
-
|
85 |
# examples = [
|
86 |
-
# [
|
87 |
-
# ['videos/
|
88 |
-
# ['videos/
|
|
|
89 |
# ['videos/no.mp4', 'no'],
|
90 |
-
# ['videos/
|
91 |
-
# ['videos/white.mp4', 'white']
|
92 |
# ]
|
93 |
|
94 |
-
description = "Gradio demo of word-level sign language classification using I3D model pretrained on the WLASL video dataset. " \
|
95 |
-
"WLASL is a large-scale dataset containing more than 2000 words in American Sign Language. " \
|
96 |
-
"Examples used in the demo are videos from the the test subset. " \
|
97 |
-
"Note that WLASL100 contains 100 words while WLASL2000 contains 2000."
|
98 |
-
|
99 |
-
|
100 |
-
article = "More information about the trained models can be found <a href=https://github.com/deanna-emery/ASL-Translator/>here</a>."
|
101 |
-
|
102 |
-
|
103 |
# Gradio App interface
|
104 |
gr.Interface(fn=translate,
|
105 |
inputs="video",
|
106 |
outputs="text",
|
107 |
allow_flagging="never",
|
108 |
title=title,
|
109 |
-
|
110 |
-
examples=examples,
|
111 |
-
article=article).launch()
|
|
|
2 |
import numpy as np
|
3 |
import gradio as gr
|
4 |
|
5 |
+
# import os
|
6 |
+
# os.chdir('modeling')
|
7 |
+
|
8 |
import tensorflow as tf, tf_keras
|
9 |
import tensorflow_hub as hub
|
10 |
from transformers import AutoTokenizer, TFAutoModelForSeq2SeqLM
|
|
|
71 |
|
72 |
translation = tokenizer.batch_decode(tokens, skip_special_tokens=True)
|
73 |
|
74 |
+
# Return dict {label:pred}
|
75 |
return {"translation":translation}
|
76 |
|
77 |
# Gradio App config
|
78 |
title = "ASL Translation (MoViNet + T5)"
|
|
|
79 |
examples = [
|
80 |
["videos/My_second_ASL_professors_name_was_Will_White.mp4",],
|
81 |
['videos/You_are_my_sunshine.mp4'],
|
|
|
84 |
['videos/all.mp4']
|
85 |
['videos/white.mp4']
|
86 |
]
|
|
|
87 |
# examples = [
|
88 |
+
# ['videos/all.mp4', 'all'],
|
89 |
+
# ['videos/white.mp4', 'white'],
|
90 |
+
# ['videos/before.mp4', 'before'],
|
91 |
+
# ['videos/blue.mp4', 'blue'],
|
92 |
# ['videos/no.mp4', 'no'],
|
93 |
+
# ['videos/accident2.mp4', 'accident']
|
|
|
94 |
# ]
|
95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
# Gradio App interface
|
97 |
gr.Interface(fn=translate,
|
98 |
inputs="video",
|
99 |
outputs="text",
|
100 |
allow_flagging="never",
|
101 |
title=title,
|
102 |
+
examples=examples).launch()
|
|
|
|