# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utils for testing.""" import tensorflow as tf, tf_keras class FakeKerasModel(tf_keras.Model): """Fake keras model for testing.""" def __init__(self): super().__init__() self.dense = tf_keras.layers.Dense(4, activation=tf.nn.relu) self.dense2 = tf_keras.layers.Dense(4, activation=tf.nn.relu) def call(self, inputs): # pytype: disable=signature-mismatch # overriding-parameter-count-checks return self.dense2(self.dense(inputs)) class _Dense(tf.Module): """A dense layer.""" def __init__(self, input_dim, output_size, name=None): super().__init__(name=name) with self.name_scope: self.w = tf.Variable( tf.random.normal([input_dim, output_size]), name='w') self.b = tf.Variable(tf.zeros([output_size]), name='b') @tf.Module.with_name_scope def __call__(self, x): y = tf.matmul(x, self.w) + self.b return tf.nn.relu(y) class FakeModule(tf.Module): """Fake model using tf.Module for testing.""" def __init__(self, input_size, name=None): super().__init__(name=name) with self.name_scope: self.dense = _Dense(input_size, 4, name='dense') self.dense2 = _Dense(4, 4, name='dense_1') @tf.Module.with_name_scope def __call__(self, x): return self.dense2(self.dense(x))