# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Builder class for preparing tf.train.Example.""" # https://www.python.org/dev/peps/pep-0563/#enabling-the-future-behavior-in-python-3-7 from __future__ import annotations from typing import Mapping, Sequence, Union import numpy as np import tensorflow as tf, tf_keras BytesValueType = Union[bytes, Sequence[bytes], str, Sequence[str]] _to_array = lambda v: [v] if not isinstance(v, (list, np.ndarray)) else v _to_bytes = lambda v: v.encode() if isinstance(v, str) else v _to_bytes_array = lambda v: list(map(_to_bytes, _to_array(v))) class TfExampleBuilder(object): """Builder class for preparing tf.train.Example. Read API doc at https://www.tensorflow.org/api_docs/python/tf/train/Example. Example usage: >>> example_builder = TfExampleBuilder() >>> example = ( example_builder.add_bytes_feature('feature_a', 'foobarbaz') .add_ints_feature('feature_b', [1, 2, 3]) .example) """ def __init__(self) -> None: self._example = tf.train.Example() @property def example(self) -> tf.train.Example: """Returns a copy of the generated tf.train.Example proto.""" return self._example @property def serialized_example(self) -> str: """Returns a serialized string of the generated tf.train.Example proto.""" return self._example.SerializeToString() def set(self, example: tf.train.Example) -> TfExampleBuilder: """Sets the example.""" self._example = example return self def reset(self) -> TfExampleBuilder: """Resets the example to an empty proto.""" self._example = tf.train.Example() return self ###### Basic APIs for primitive data types ###### def add_feature_dict( self, feature_dict: Mapping[str, tf.train.Feature]) -> TfExampleBuilder: """Adds the predefined `feature_dict` to the example. Note: Please prefer to using feature-type-specific methods. Args: feature_dict: A dictionary from tf.Example feature key to tf.train.Feature. Returns: The builder object for subsequent method calls. """ for k, v in feature_dict.items(): self._example.features.feature[k].CopyFrom(v) return self def add_feature(self, key: str, feature: tf.train.Feature) -> TfExampleBuilder: """Adds predefined `feature` with `key` to the example. Args: key: String key of the feature. feature: The feature to be added to the example. Returns: The builder object for subsequent method calls. """ self._example.features.feature[key].CopyFrom(feature) return self def add_bytes_feature(self, key: str, value: BytesValueType) -> TfExampleBuilder: """Adds byte(s) or string(s) with `key` to the example. Args: key: String key of the feature. value: The byte(s) or string(s) to be added to the example. Returns: The builder object for subsequent method calls. """ return self.add_feature( key, tf.train.Feature( bytes_list=tf.train.BytesList(value=_to_bytes_array(value)))) def add_ints_feature(self, key: str, value: Union[int, Sequence[int]]) -> TfExampleBuilder: """Adds integer(s) with `key` to the example. Args: key: String key of the feature. value: The integer(s) to be added to the example. Returns: The builder object for subsequent method calls. """ return self.add_feature( key, tf.train.Feature(int64_list=tf.train.Int64List(value=_to_array(value)))) def add_floats_feature( self, key: str, value: Union[float, Sequence[float]]) -> TfExampleBuilder: """Adds float(s) with `key` to the example. Args: key: String key of the feature. value: The float(s) to be added to the example. Returns: The builder object for subsequent method calls. """ return self.add_feature( key, tf.train.Feature(float_list=tf.train.FloatList(value=_to_array(value))))