# Video classification using MoViNet-A4 backbone on multiple GPUs. # This configuration is incomplete - Some parameters will be set by model garden Docker. # --experiment_type=movinet_kinetics600 runtime: distribution_strategy: 'multi_worker_mirrored' mixed_precision_dtype: 'bfloat16' task: losses: l2_weight_decay: 0.00003 label_smoothing: 0.1 model: backbone: movinet: model_id: 'a4' stochastic_depth_drop_rate: 0.2 causal: false norm_activation: use_sync_bn: true dropout_rate: 0.5 activation: 'swish' train_data: variant_name: rgb feature_shape: !!python/tuple - 32 - 290 - 290 - 3 temporal_stride: 3 random_stride_range: 1 dtype: 'bfloat16' min_image_size: 320 aug_max_area_ratio: 1.0 aug_max_aspect_ratio: 2.0 aug_min_area_ratio: 0.08 aug_min_aspect_ratio: 0.5 validation_data: feature_shape: !!python/tuple - 32 - 290 - 290 - 3 temporal_stride: 3 num_test_clips: 1 num_test_crops: 1 min_image_size: 320 dtype: 'bfloat16' drop_remainder: false trainer: optimizer_config: learning_rate: cosine: initial_learning_rate: 1.8 decay_steps: 85785 warmup: linear: warmup_steps: 300 optimizer: type: 'rmsprop' rmsprop: rho: 0.9 momentum: 0.9 epsilon: 1.0 clipnorm: 1.0 steps_per_loop: 500 summary_interval: 500 validation_interval: 500