# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Data loader utils.""" from typing import Dict # Import libraries import tensorflow as tf, tf_keras from official.vision.ops import preprocess_ops def process_source_id(source_id: tf.Tensor) -> tf.Tensor: """Processes source_id to the right format. Args: source_id: A `tf.Tensor` that contains the source ID. It can be empty. Returns: A formatted source ID. """ if source_id.dtype == tf.string: source_id = tf.strings.to_number(source_id, tf.int64) with tf.control_dependencies([source_id]): source_id = tf.cond( pred=tf.equal(tf.size(input=source_id), 0), true_fn=lambda: tf.cast(tf.constant(-1), tf.int64), false_fn=lambda: tf.identity(source_id)) return source_id def pad_groundtruths_to_fixed_size(groundtruths: Dict[str, tf.Tensor], size: int) -> Dict[str, tf.Tensor]: """Pads the first dimension of groundtruths labels to the fixed size. Args: groundtruths: A dictionary of {`str`: `tf.Tensor`} that contains groundtruth annotations of `boxes`, `is_crowds`, `areas` and `classes`. size: An `int` that specifies the expected size of the first dimension of padded tensors. Returns: A dictionary of the same keys as input and padded tensors as values. """ groundtruths['boxes'] = preprocess_ops.clip_or_pad_to_fixed_size( groundtruths['boxes'], size, -1) groundtruths['is_crowds'] = preprocess_ops.clip_or_pad_to_fixed_size( groundtruths['is_crowds'], size, 0) groundtruths['areas'] = preprocess_ops.clip_or_pad_to_fixed_size( groundtruths['areas'], size, -1) groundtruths['classes'] = preprocess_ops.clip_or_pad_to_fixed_size( groundtruths['classes'], size, -1) if 'attributes' in groundtruths: for k, v in groundtruths['attributes'].items(): groundtruths['attributes'][k] = preprocess_ops.clip_or_pad_to_fixed_size( v, size, -1) return groundtruths def binarize_matting_map(matting_map: tf.Tensor, threshold: float = 0.5) -> tf.Tensor: """Binarizes a matting map. If the matting_map value is above a threshold, set it as 1 otherwise 0. The binarization is done for every element in the matting_map. Args: matting_map: The groundtruth in the matting map format. threshold: The threshold used to binarize the matting map. Returns: The binarized labels (0 for BG, 1 for FG) as tf.float32. """ return tf.cast(tf.greater(matting_map, threshold), tf.float32)