# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Transformer model helper methods.""" import math import numpy as np import tensorflow as tf, tf_keras # Very low numbers to represent -infinity. We do not actually use -Inf, since we # want to be able to multiply these values by zero to get zero. (-Inf * 0 = NaN) _NEG_INF_FP32 = -1e9 _NEG_INF_FP16 = np.finfo(np.float16).min def get_position_encoding(length, hidden_size, min_timescale=1.0, max_timescale=1.0e4): """Return positional encoding. Calculates the position encoding as a mix of sine and cosine functions with geometrically increasing wavelengths. Defined and formulized in Attention is All You Need, section 3.5. Args: length: Sequence length. hidden_size: Size of the min_timescale: Minimum scale that will be applied at each position max_timescale: Maximum scale that will be applied at each position Returns: Tensor with shape [length, hidden_size] """ # We compute the positional encoding in float32 even if the model uses # float16, as many of the ops used, like log and exp, are numerically unstable # in float16. position = tf.cast(tf.range(length), tf.float32) num_timescales = hidden_size // 2 log_timescale_increment = ( math.log(float(max_timescale) / float(min_timescale)) / (tf.cast(num_timescales, tf.float32) - 1)) inv_timescales = min_timescale * tf.exp( tf.cast(tf.range(num_timescales), tf.float32) * -log_timescale_increment) scaled_time = tf.expand_dims(position, 1) * tf.expand_dims(inv_timescales, 0) signal = tf.concat([tf.sin(scaled_time), tf.cos(scaled_time)], axis=1) return signal def get_decoder_self_attention_bias(length, dtype=tf.float32): """Calculate bias for decoder that maintains model's autoregressive property. Creates a tensor that masks out locations that correspond to illegal connections, so prediction at position i cannot draw information from future positions. Args: length: int length of sequences in batch. dtype: The dtype of the return value. Returns: float tensor of shape [1, 1, length, length] """ neg_inf = _NEG_INF_FP16 if dtype == tf.float16 else _NEG_INF_FP32 with tf.name_scope("decoder_self_attention_bias"): valid_locs = tf.linalg.band_part( tf.ones([length, length], dtype=dtype), -1, 0) valid_locs = tf.reshape(valid_locs, [1, 1, length, length]) decoder_bias = neg_inf * (1.0 - valid_locs) return decoder_bias def get_padding(x, padding_value=0, dtype=tf.float32): """Return float tensor representing the padding values in x. Args: x: int tensor with any shape padding_value: int which represents padded values in input dtype: The dtype of the return value. Returns: float tensor with same shape as x containing values 0 or 1. 0 -> non-padding, 1 -> padding """ with tf.name_scope("padding"): return tf.cast(tf.equal(x, padding_value), dtype) def get_padding_bias(x, padding_value=0, dtype=tf.float32): """Calculate bias tensor from padding values in tensor. Bias tensor that is added to the pre-softmax multi-headed attention logits, which has shape [batch_size, num_heads, length, length]. The tensor is zero at non-padding locations, and -1e9 (negative infinity) at padding locations. Args: x: int tensor with shape [batch_size, length] padding_value: int which represents padded values in input dtype: The dtype of the return value Returns: Attention bias tensor of shape [batch_size, 1, 1, length]. """ with tf.name_scope("attention_bias"): padding = get_padding(x, padding_value, dtype) attention_bias = padding * _NEG_INF_FP32 attention_bias = tf.expand_dims( tf.expand_dims(attention_bias, axis=1), axis=1) return attention_bias