# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test Transformer model helper methods.""" import tensorflow as tf, tf_keras from official.legacy.transformer import model_utils NEG_INF = -1e9 class ModelUtilsTest(tf.test.TestCase): def test_get_padding(self): x = tf.constant([[1, 0, 0, 0, 2], [3, 4, 0, 0, 0], [0, 5, 6, 0, 7]]) padding = model_utils.get_padding(x, padding_value=0) self.assertAllEqual([[0, 1, 1, 1, 0], [0, 0, 1, 1, 1], [1, 0, 0, 1, 0]], padding) def test_get_padding_bias(self): x = tf.constant([[1, 0, 0, 0, 2], [3, 4, 0, 0, 0], [0, 5, 6, 0, 7]]) bias = model_utils.get_padding_bias(x) bias_shape = tf.shape(bias) flattened_bias = tf.reshape(bias, [3, 5]) self.assertAllEqual( [[0, NEG_INF, NEG_INF, NEG_INF, 0], [0, 0, NEG_INF, NEG_INF, NEG_INF], [NEG_INF, 0, 0, NEG_INF, 0]], flattened_bias) self.assertAllEqual([3, 1, 1, 5], bias_shape) def test_get_decoder_self_attention_bias(self): length = 5 bias = model_utils.get_decoder_self_attention_bias(length) self.assertAllEqual( [[[[0, NEG_INF, NEG_INF, NEG_INF, NEG_INF], [0, 0, NEG_INF, NEG_INF, NEG_INF], [0, 0, 0, NEG_INF, NEG_INF], [0, 0, 0, 0, NEG_INF], [0, 0, 0, 0, 0]]]], bias) if __name__ == "__main__": tf.test.main()