# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for Keras-based transformer block layer.""" from absl.testing import parameterized import numpy as np import tensorflow as tf, tf_keras from official.nlp.modeling.layers import reuse_transformer @parameterized.named_parameters( ('base', reuse_transformer.ReuseTransformer)) class ReuseTransformerLayerTest(tf.test.TestCase, parameterized.TestCase): def tearDown(self): super(ReuseTransformerLayerTest, self).tearDown() tf_keras.mixed_precision.set_global_policy('float32') def test_layer_creation(self, transformer_cls): test_layer = transformer_cls( num_attention_heads=10, inner_dim=2048, inner_activation='relu') sequence_length = 21 width = 80 # Create a 3-dimensional input (the first dimension is implicit). data_tensor = tf_keras.Input(shape=(sequence_length, width)) output_tensor, _ = test_layer(data_tensor) # The default output of a transformer layer should be the same as the input. self.assertEqual(data_tensor.shape.as_list(), output_tensor.shape.as_list()) def test_layer_creation_with_mask(self, transformer_cls): test_layer = transformer_cls( num_attention_heads=10, inner_dim=2048, inner_activation='relu') sequence_length = 21 width = 80 # Create a 3-dimensional input (the first dimension is implicit). data_tensor = tf_keras.Input(shape=(sequence_length, width)) # Create a 2-dimensional input (the first dimension is implicit). mask_tensor = tf_keras.Input(shape=(sequence_length, sequence_length)) output_tensor, _ = test_layer([data_tensor, mask_tensor]) # The default output of a transformer layer should be the same as the input. self.assertEqual(data_tensor.shape.as_list(), output_tensor.shape.as_list()) def test_layer_invocation(self, transformer_cls): test_layer = transformer_cls( num_attention_heads=10, inner_dim=2048, inner_activation='relu') sequence_length = 21 width = 80 # Create a 3-dimensional input (the first dimension is implicit). data_tensor = tf_keras.Input(shape=(sequence_length, width)) output_tensor = test_layer(data_tensor) # Create a model from the test layer. model = tf_keras.Model(data_tensor, output_tensor) # Invoke the model on test data. We can't validate the output data itself # (the NN is too complex) but this will rule out structural runtime errors. batch_size = 6 input_data = np.random.random_sample( (batch_size, sequence_length, width)) _ = model.predict(input_data) def test_layer_invocation_with_mask(self, transformer_cls): test_layer = transformer_cls( num_attention_heads=10, inner_dim=2048, inner_activation='relu') sequence_length = 21 width = 80 # Create a 3-dimensional input (the first dimension is implicit). data_tensor = tf_keras.Input(shape=(sequence_length, width)) # Create a 2-dimensional input (the first dimension is implicit). mask_tensor = tf_keras.Input(shape=(sequence_length, sequence_length)) output_tensor = test_layer([data_tensor, mask_tensor]) # Create a model from the test layer. model = tf_keras.Model([data_tensor, mask_tensor], output_tensor) # Invoke the model on test data. We can't validate the output data itself # (the NN is too complex) but this will rule out structural runtime errors. batch_size = 6 input_data = np.random.random_sample( (batch_size, sequence_length, width)) # The attention mask should be of shape (batch, from_seq_len, to_seq_len), # which here is (batch, sequence_length, sequence_length) mask_data = np.random.randint( 2, size=(batch_size, sequence_length, sequence_length)) _ = model.predict([input_data, mask_data]) def test_layer_output_range(self, transformer_cls): test_layer = transformer_cls( num_attention_heads=10, inner_dim=2048, inner_activation='relu') sequence_length = 21 width = 80 batch_size = 6 input_data = np.random.random_sample( (batch_size, sequence_length, width)) mask_data = np.random.randint( 2, size=(batch_size, sequence_length, sequence_length)) output_tensor, _ = test_layer([input_data, mask_data]) # The layer only attends to the first token and outputs the first token # embedding. new_layer = transformer_cls( num_attention_heads=10, inner_dim=2048, inner_activation='relu', output_range=1) _ = new_layer([input_data, mask_data]) new_layer.set_weights(test_layer.get_weights()) new_output_tensor, _ = new_layer([input_data, mask_data]) self.assertAllClose( new_output_tensor, output_tensor[:, 0:1, :], atol=0.002, rtol=0.01) def test_layer_output_range_with_relative_pe(self, transformer_cls): test_layer = transformer_cls( num_attention_heads=10, inner_dim=2048, inner_activation='relu', use_relative_pe=True) sequence_length = 21 width = 80 batch_size = 6 input_data = np.random.random_sample( (batch_size, sequence_length, width)) mask_data = np.random.randint( 2, size=(batch_size, sequence_length, sequence_length)) output_tensor, _ = test_layer([input_data, mask_data]) # The layer only attends to the first token and outputs the first token # embedding. new_layer = transformer_cls( num_attention_heads=10, inner_dim=2048, inner_activation='relu', output_range=1, use_relative_pe=True) _ = new_layer([input_data, mask_data]) new_layer.set_weights(test_layer.get_weights()) new_output_tensor, _ = new_layer([input_data, mask_data]) self.assertAllClose( new_output_tensor, output_tensor[:, 0:1, :], atol=0.002, rtol=0.01) def test_layer_output_range_without_mask(self, transformer_cls): test_layer = transformer_cls( num_attention_heads=10, inner_dim=2048, inner_activation='relu', norm_first=True) sequence_length = 21 width = 80 batch_size = 6 input_data = np.random.random_sample( (batch_size, sequence_length, width)) output_tensor, _ = test_layer(input_data) # The layer only attends to the first token and outputs the first token # embedding. new_layer = transformer_cls( num_attention_heads=10, inner_dim=2048, inner_activation='relu', output_range=1, norm_first=True) _ = new_layer(input_data) new_layer.set_weights(test_layer.get_weights()) new_output_tensor, _ = new_layer(input_data) self.assertAllClose( new_output_tensor, output_tensor[:, 0:1, :], atol=0.002, rtol=0.01) def test_layer_output_range_with_pre_norm(self, transformer_cls): test_layer = transformer_cls( num_attention_heads=10, inner_dim=2048, inner_activation='relu', norm_first=True) sequence_length = 21 width = 80 batch_size = 6 input_data = np.random.random_sample( (batch_size, sequence_length, width)) mask_data = np.random.randint( 2, size=(batch_size, sequence_length, sequence_length)) output_tensor, _ = test_layer([input_data, mask_data]) # The layer only attends to the first token and outputs the first token # embedding. new_layer = transformer_cls( num_attention_heads=10, inner_dim=2048, inner_activation='relu', output_range=1, norm_first=True) _ = new_layer([input_data, mask_data]) new_layer.set_weights(test_layer.get_weights()) new_output_tensor, _ = new_layer([input_data, mask_data]) self.assertAllClose( new_output_tensor, output_tensor[:, 0:1, :], atol=0.002, rtol=0.01) def test_layer_invocation_with_float16_dtype(self, transformer_cls): tf_keras.mixed_precision.set_global_policy('mixed_float16') test_layer = transformer_cls( num_attention_heads=10, inner_dim=2048, inner_activation='relu') sequence_length = 21 width = 80 # Create a 3-dimensional input (the first dimension is implicit). data_tensor = tf_keras.Input(shape=(sequence_length, width)) # Create a 2-dimensional input (the first dimension is implicit). mask_tensor = tf_keras.Input(shape=(sequence_length, sequence_length)) output_tensor = test_layer([data_tensor, mask_tensor]) # Create a model from the test layer. model = tf_keras.Model([data_tensor, mask_tensor], output_tensor) # Invoke the model on test data. We can't validate the output data itself # (the NN is too complex) but this will rule out structural runtime errors. batch_size = 6 input_data = (np.random.random_sample( (batch_size, sequence_length, width))) # The attention mask should be of shape (batch, from_seq_len, to_seq_len), # which here is (batch, sequence_length, sequence_length) mask_data = np.random.randint( 2, size=(batch_size, sequence_length, sequence_length)) _ = model.predict([input_data, mask_data]) def test_transform_with_initializer(self, transformer_cls): test_layer = transformer_cls( num_attention_heads=10, inner_dim=2048, inner_activation='relu', kernel_initializer=tf_keras.initializers.TruncatedNormal(stddev=0.02)) sequence_length = 21 width = 80 # Create a 3-dimensional input (the first dimension is implicit). data_tensor = tf_keras.Input(shape=(sequence_length, width)) output, _ = test_layer(data_tensor) # The default output of a transformer layer should be the same as the input. self.assertEqual(data_tensor.shape.as_list(), output.shape.as_list()) def test_dynamic_layer_sequence(self, transformer_cls): test_layer = transformer_cls( num_attention_heads=10, inner_dim=2048, inner_activation='relu', kernel_initializer=tf_keras.initializers.TruncatedNormal(stddev=0.02)) # Create a 3-dimensional input (the first dimension is implicit). width = 30 input_tensor = tf_keras.Input(shape=(None, width)) output_tensor, _ = test_layer(input_tensor) model = tf_keras.Model(input_tensor, output_tensor) input_length = 17 input_data = np.ones((1, input_length, width)) output_data = model.predict(input_data) self.assertAllEqual([1, input_length, width], output_data.shape) class ReuseTransformerArgumentTest(tf.test.TestCase, parameterized.TestCase): def test_use_bias_norm_first(self): num_attention_heads = 2 hidden_size = 16 encoder_block = reuse_transformer.ReuseTransformer( num_attention_heads=num_attention_heads, inner_dim=32, inner_activation='relu', output_dropout=0.1, attention_dropout=0.1, use_bias=False, norm_first=True, norm_epsilon=1e-6, inner_dropout=0.1, attention_initializer=tf_keras.initializers.RandomUniform( minval=0., maxval=1.)) # Forward path. dummy_tensor = tf.zeros([2, 4, 16], dtype=tf.float32) dummy_mask = tf.zeros([2, 4, 4], dtype=tf.float32) inputs = [dummy_tensor, dummy_mask] output, _ = encoder_block(inputs) self.assertEqual(output.shape, (2, 4, hidden_size)) def test_get_config(self): num_attention_heads = 2 encoder_block = reuse_transformer.ReuseTransformer( num_attention_heads=num_attention_heads, inner_dim=32, inner_activation='relu', output_dropout=0.1, attention_dropout=0.1, use_bias=False, norm_first=True, norm_epsilon=1e-6, inner_dropout=0.1, attention_initializer=tf_keras.initializers.RandomUniform( minval=0., maxval=1.)) encoder_block_config = encoder_block.get_config() new_encoder_block = reuse_transformer.ReuseTransformer.from_config( encoder_block_config) self.assertEqual(encoder_block_config, new_encoder_block.get_config()) @parameterized.parameters({'attention_axes': None}, {'attention_axes': [1]}, {'attention_axes': [2]}, {'attention_axes': [1, 2]}) def test_several_attention_axes(self, attention_axes): test_layer = reuse_transformer.ReuseTransformer( inner_dim=32, inner_activation='relu', output_dropout=0.1, attention_dropout=0.1, use_bias=False, norm_first=True, norm_epsilon=1e-6, inner_dropout=0.1, num_attention_heads=10, attention_axes=attention_axes) num_rows = 21 num_cols = 13 width = 80 # Create a 3-dimensional input (the first dimension is implicit). data_tensor = tf_keras.Input(shape=(num_rows, num_cols, width)) output_tensor, _ = test_layer(data_tensor) # The default output of a transformer layer should be the same as the input. self.assertEqual(data_tensor.shape.as_list(), output_tensor.shape.as_list()) @parameterized.named_parameters( ('plain', False, False, False), ('plain_returnscore', False, True, False), ('plain_with_relative_pe', False, False, True), ('reuse_all', True, False, False), ('reuse_all_returnscore', True, True, False), ('reuse_all_with_relative_pe', True, False, True), ('reuse_5', 5, False, False), ('reuse_5_returnscore', 5, True, False), ('reuse_5_with_relative_pe', 5, False, True),) def test_layer_invocation_with_mask(self, reuse_attention, return_attention_scores, use_relative_pe): test_layer = reuse_transformer.ReuseTransformer( num_attention_heads=10, inner_dim=2048, inner_activation='relu', reuse_attention=reuse_attention, use_relative_pe=use_relative_pe) sequence_length = 21 width = 80 # Create a 3-dimensional input (the first dimension is implicit). data_tensor = tf_keras.Input(shape=(sequence_length, width)) # Create a 2-dimensional input (the first dimension is implicit). mask_tensor = tf_keras.Input(shape=(sequence_length, sequence_length)) return_scores_tensor = tf_keras.Input(shape=(1,)) reuse_attention_scores = tf_keras.Input( shape=(10, sequence_length, sequence_length)) output_tensor, _ = test_layer( [data_tensor, mask_tensor, reuse_attention_scores]) # Create a model from the test layer. model = tf_keras.Model( ([data_tensor, mask_tensor, reuse_attention_scores], return_scores_tensor), output_tensor) # Invoke the model on test data. We can't validate the output data itself # (the NN is too complex) but this will rule out structural runtime errors. batch_size = 6 input_data = np.random.random_sample( (batch_size, sequence_length, width)) # The attention mask should be of shape (batch, from_seq_len, to_seq_len), # which here is (batch, sequence_length, sequence_length) mask_data = np.random.randint( 2, size=(batch_size, sequence_length, sequence_length)) reuse_scores = np.random.rand( batch_size, 10, sequence_length, sequence_length) _ = model.predict([input_data, mask_data, reuse_scores], return_attention_scores) @parameterized.named_parameters( ('without_relative_pe_with_pe_max_seq_length_10', False, 10), ('with_relative_pe_with_pe_max_seq_length_10', True, 10), ('without_relative_pe_with_pe_max_seq_length_100', False, 100), ('with_relative_pe_with_pe_max_seq_length_100', True, 100)) def test_layer_invocation_with_float16_with_relative_pe( self, use_relative_pe, pe_max_seq_length): tf_keras.mixed_precision.set_global_policy('mixed_float16') test_layer = reuse_transformer.ReuseTransformer( num_attention_heads=10, inner_dim=2048, inner_activation='relu', use_relative_pe=use_relative_pe, pe_max_seq_length=pe_max_seq_length) sequence_length = 21 width = 80 # Create a 3-dimensional input (the first dimension is implicit). data_tensor = tf_keras.Input(shape=(sequence_length, width)) # Create a 2-dimensional input (the first dimension is implicit). mask_tensor = tf_keras.Input(shape=(sequence_length, sequence_length)) output_tensor = test_layer([data_tensor, mask_tensor]) # Create a model from the test layer. model = tf_keras.Model([data_tensor, mask_tensor], output_tensor) # Invoke the model on test data. We can't validate the output data itself # (the NN is too complex) but this will rule out structural runtime errors. batch_size = 6 input_data = (np.random.random_sample( (batch_size, sequence_length, width))) # The attention mask should be of shape (batch, from_seq_len, to_seq_len), # which here is (batch, sequence_length, sequence_length) mask_data = np.random.randint( 2, size=(batch_size, sequence_length, sequence_length)) _ = model.predict([input_data, mask_data]) if __name__ == '__main__': tf.test.main()