# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests that masked LM models are deterministic when determinism is enabled.""" import tensorflow as tf, tf_keras from official.nlp.configs import bert from official.nlp.configs import encoders from official.nlp.data import pretrain_dataloader from official.nlp.tasks import masked_lm class MLMTaskTest(tf.test.TestCase): def _build_dataset(self, params, vocab_size): def dummy_data(_): dummy_ids = tf.random.uniform((1, params.seq_length), maxval=vocab_size, dtype=tf.int32) dummy_mask = tf.ones((1, params.seq_length), dtype=tf.int32) dummy_type_ids = tf.zeros((1, params.seq_length), dtype=tf.int32) dummy_lm = tf.zeros((1, params.max_predictions_per_seq), dtype=tf.int32) return dict( input_word_ids=dummy_ids, input_mask=dummy_mask, input_type_ids=dummy_type_ids, masked_lm_positions=dummy_lm, masked_lm_ids=dummy_lm, masked_lm_weights=tf.cast(dummy_lm, dtype=tf.float32), next_sentence_labels=tf.zeros((1, 1), dtype=tf.int32)) dataset = tf.data.Dataset.range(1) dataset = dataset.repeat() dataset = dataset.map( dummy_data, num_parallel_calls=tf.data.experimental.AUTOTUNE) return dataset def _build_and_run_model(self, config, num_steps=5): task = masked_lm.MaskedLMTask(config) model = task.build_model() metrics = task.build_metrics() dataset = self._build_dataset(config.train_data, config.model.encoder.get().vocab_size) iterator = iter(dataset) optimizer = tf_keras.optimizers.SGD(lr=0.1) # Run training for _ in range(num_steps): logs = task.train_step(next(iterator), model, optimizer, metrics=metrics) for metric in metrics: logs[metric.name] = metric.result() # Run validation validation_logs = task.validation_step(next(iterator), model, metrics=metrics) for metric in metrics: validation_logs[metric.name] = metric.result() return logs, validation_logs, model.weights def test_task_determinism(self): config = masked_lm.MaskedLMConfig( init_checkpoint=self.get_temp_dir(), scale_loss=True, model=bert.PretrainerConfig( encoder=encoders.EncoderConfig( bert=encoders.BertEncoderConfig(vocab_size=30522, num_layers=1)), cls_heads=[ bert.ClsHeadConfig( inner_dim=10, num_classes=2, name="next_sentence") ]), train_data=pretrain_dataloader.BertPretrainDataConfig( max_predictions_per_seq=20, seq_length=128, global_batch_size=1)) tf_keras.utils.set_random_seed(1) logs1, validation_logs1, weights1 = self._build_and_run_model(config) tf_keras.utils.set_random_seed(1) logs2, validation_logs2, weights2 = self._build_and_run_model(config) self.assertEqual(logs1["loss"], logs2["loss"]) self.assertEqual(validation_logs1["loss"], validation_logs2["loss"]) for weight1, weight2 in zip(weights1, weights2): self.assertAllEqual(weight1, weight2) if __name__ == "__main__": tf.config.experimental.enable_op_determinism() tf.test.main()