# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for Panoptic Quality metric. Note that this metric test class is branched from https://github.com/tensorflow/models/blob/master/research/deeplab/evaluation/panoptic_quality_test.py """ from absl.testing import absltest import numpy as np import tensorflow as tf, tf_keras from official.vision.evaluation import panoptic_quality class PanopticQualityTest(absltest.TestCase): def test_perfect_match(self): category_mask = np.zeros([6, 6], np.uint16) instance_mask = np.array([ [1, 1, 1, 1, 1, 1], [1, 2, 2, 2, 2, 1], [1, 2, 2, 2, 2, 1], [1, 2, 2, 2, 2, 1], [1, 2, 2, 1, 1, 1], [1, 2, 1, 1, 1, 1], ], dtype=np.uint16) groundtruths = { 'category_mask': category_mask, 'instance_mask': instance_mask } predictions = { 'category_mask': category_mask, 'instance_mask': instance_mask } pq_metric = panoptic_quality.PanopticQuality( num_categories=1, ignored_label=2, max_instances_per_category=16, offset=16) pq_metric.compare_and_accumulate(groundtruths, predictions) np.testing.assert_array_equal(pq_metric.iou_per_class, [2.0]) np.testing.assert_array_equal(pq_metric.tp_per_class, [2]) np.testing.assert_array_equal(pq_metric.fn_per_class, [0]) np.testing.assert_array_equal(pq_metric.fp_per_class, [0]) results = pq_metric.result() np.testing.assert_array_equal(results['pq_per_class'], [1.0]) np.testing.assert_array_equal(results['rq_per_class'], [1.0]) np.testing.assert_array_equal(results['sq_per_class'], [1.0]) self.assertAlmostEqual(results['All_pq'], 1.0) self.assertAlmostEqual(results['All_rq'], 1.0) self.assertAlmostEqual(results['All_sq'], 1.0) self.assertEqual(results['All_num_categories'], 1) def test_totally_wrong(self): category_mask = np.array([ [0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], ], dtype=np.uint16) instance_mask = np.zeros([6, 6], np.uint16) groundtruths = { 'category_mask': category_mask, 'instance_mask': instance_mask } predictions = { 'category_mask': 1 - category_mask, 'instance_mask': instance_mask } pq_metric = panoptic_quality.PanopticQuality( num_categories=2, ignored_label=2, max_instances_per_category=1, offset=16) pq_metric.compare_and_accumulate(groundtruths, predictions) np.testing.assert_array_equal(pq_metric.iou_per_class, [0.0, 0.0]) np.testing.assert_array_equal(pq_metric.tp_per_class, [0, 0]) np.testing.assert_array_equal(pq_metric.fn_per_class, [1, 1]) np.testing.assert_array_equal(pq_metric.fp_per_class, [1, 1]) results = pq_metric.result() np.testing.assert_array_equal(results['pq_per_class'], [0.0, 0.0]) np.testing.assert_array_equal(results['rq_per_class'], [0.0, 0.0]) np.testing.assert_array_equal(results['sq_per_class'], [0.0, 0.0]) self.assertAlmostEqual(results['All_pq'], 0.0) self.assertAlmostEqual(results['All_rq'], 0.0) self.assertAlmostEqual(results['All_sq'], 0.0) self.assertEqual(results['All_num_categories'], 2) def test_matches_by_iou(self): groundtruth_instance_mask = np.array( [ [1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1], [1, 1, 2, 2, 2, 1], [1, 2, 2, 2, 2, 1], [1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1], ], dtype=np.uint16) good_det_instance_mask = np.array( [ [1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1], [1, 2, 2, 2, 2, 1], [1, 2, 2, 2, 1, 1], [1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1], ], dtype=np.uint16) groundtruths = { 'category_mask': np.zeros_like(groundtruth_instance_mask), 'instance_mask': groundtruth_instance_mask } predictions = { 'category_mask': np.zeros_like(good_det_instance_mask), 'instance_mask': good_det_instance_mask } pq_metric = panoptic_quality.PanopticQuality( num_categories=1, ignored_label=2, max_instances_per_category=16, offset=16) pq_metric.compare_and_accumulate(groundtruths, predictions) # iou(1, 1) = 28/30 # iou(2, 2) = 6 / 8 np.testing.assert_array_almost_equal(pq_metric.iou_per_class, [28 / 30 + 6 / 8]) np.testing.assert_array_equal(pq_metric.tp_per_class, [2]) np.testing.assert_array_equal(pq_metric.fn_per_class, [0]) np.testing.assert_array_equal(pq_metric.fp_per_class, [0]) results = pq_metric.result() np.testing.assert_array_equal(results['pq_per_class'], [(28 / 30 + 6 / 8) / 2]) np.testing.assert_array_equal(results['rq_per_class'], [1.0]) np.testing.assert_array_equal(results['sq_per_class'], [(28 / 30 + 6 / 8) / 2]) self.assertAlmostEqual(results['All_pq'], (28 / 30 + 6 / 8) / 2) self.assertAlmostEqual(results['All_rq'], 1.0) self.assertAlmostEqual(results['All_sq'], (28 / 30 + 6 / 8) / 2) self.assertEqual(results['All_num_categories'], 1) bad_det_instance_mask = np.array( [ [1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1], [1, 1, 1, 2, 2, 1], [1, 1, 1, 2, 2, 1], [1, 1, 1, 2, 2, 1], [1, 1, 1, 1, 1, 1], ], dtype=np.uint16) predictions['instance_mask'] = bad_det_instance_mask pq_metric.reset() pq_metric.compare_and_accumulate(groundtruths, predictions) # iou(1, 1) = 27/32 np.testing.assert_array_almost_equal(pq_metric.iou_per_class, [27 / 32]) np.testing.assert_array_equal(pq_metric.tp_per_class, [1]) np.testing.assert_array_equal(pq_metric.fn_per_class, [1]) np.testing.assert_array_equal(pq_metric.fp_per_class, [1]) results = pq_metric.result() np.testing.assert_array_equal(results['pq_per_class'], [27 / 32 / 2]) np.testing.assert_array_equal(results['rq_per_class'], [0.5]) np.testing.assert_array_equal(results['sq_per_class'], [27 / 32]) self.assertAlmostEqual(results['All_pq'], 27 / 32 / 2) self.assertAlmostEqual(results['All_rq'], 0.5) self.assertAlmostEqual(results['All_sq'], 27 / 32) self.assertEqual(results['All_num_categories'], 1) def test_wrong_instances(self): category_mask = np.array([ [1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1], [1, 2, 2, 1, 2, 2], [1, 2, 2, 1, 2, 2], [1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1], ], dtype=np.uint16) groundtruth_instance_mask = np.zeros([6, 6], dtype=np.uint16) predicted_instance_mask = np.array([ [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 1], [0, 0, 0, 0, 1, 1], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], ], dtype=np.uint16) groundtruths = { 'category_mask': category_mask, 'instance_mask': groundtruth_instance_mask } predictions = { 'category_mask': category_mask, 'instance_mask': predicted_instance_mask } pq_metric = panoptic_quality.PanopticQuality( num_categories=3, ignored_label=0, max_instances_per_category=10, offset=100) pq_metric.compare_and_accumulate(groundtruths, predictions) np.testing.assert_array_equal(pq_metric.iou_per_class, [0.0, 1.0, 0.0]) np.testing.assert_array_equal(pq_metric.tp_per_class, [0, 1, 0]) np.testing.assert_array_equal(pq_metric.fn_per_class, [0, 0, 1]) np.testing.assert_array_equal(pq_metric.fp_per_class, [0, 0, 2]) results = pq_metric.result() np.testing.assert_array_equal(results['pq_per_class'], [0.0, 1.0, 0.0]) np.testing.assert_array_equal(results['rq_per_class'], [0.0, 1.0, 0.0]) np.testing.assert_array_equal(results['sq_per_class'], [0.0, 1.0, 0.0]) self.assertAlmostEqual(results['All_pq'], 0.5) self.assertAlmostEqual(results['All_rq'], 0.5) self.assertAlmostEqual(results['All_sq'], 0.5) self.assertEqual(results['All_num_categories'], 2) def test_instance_order_is_arbitrary(self): category_mask = np.array([ [1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1], [1, 2, 2, 1, 2, 2], [1, 2, 2, 1, 2, 2], [1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1], ], dtype=np.uint16) groundtruth_instance_mask = np.array([ [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 1, 1, 0, 0, 0], [0, 1, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], ], dtype=np.uint16) predicted_instance_mask = np.array([ [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 1], [0, 0, 0, 0, 1, 1], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], ], dtype=np.uint16) groundtruths = { 'category_mask': category_mask, 'instance_mask': groundtruth_instance_mask } predictions = { 'category_mask': category_mask, 'instance_mask': predicted_instance_mask } pq_metric = panoptic_quality.PanopticQuality( num_categories=3, ignored_label=0, max_instances_per_category=10, offset=100) pq_metric.compare_and_accumulate(groundtruths, predictions) np.testing.assert_array_equal(pq_metric.iou_per_class, [0.0, 1.0, 2.0]) np.testing.assert_array_equal(pq_metric.tp_per_class, [0, 1, 2]) np.testing.assert_array_equal(pq_metric.fn_per_class, [0, 0, 0]) np.testing.assert_array_equal(pq_metric.fp_per_class, [0, 0, 0]) results = pq_metric.result() np.testing.assert_array_equal(results['pq_per_class'], [0.0, 1.0, 1.0]) np.testing.assert_array_equal(results['rq_per_class'], [0.0, 1.0, 1.0]) np.testing.assert_array_equal(results['sq_per_class'], [0.0, 1.0, 1.0]) self.assertAlmostEqual(results['All_pq'], 1.0) self.assertAlmostEqual(results['All_rq'], 1.0) self.assertAlmostEqual(results['All_sq'], 1.0) self.assertEqual(results['All_num_categories'], 2) class PanopticQualityV2Test(tf.test.TestCase): def test_perfect_match(self): panoptic_metrics = panoptic_quality.PanopticQualityV2( name='panoptic_metrics', num_categories=2, ) y_true = { 'category_mask': tf.ones([1, 6, 6], dtype=tf.int32), 'instance_mask': [[ [1, 1, 1, 1, 1, 1], [1, 2, 2, 2, 2, 1], [1, 2, 2, 2, 2, 1], [1, 2, 2, 2, 2, 1], [1, 2, 2, 1, 1, 1], [1, 2, 1, 1, 1, 1], ]], 'image_info': tf.constant( [[[6, 6], [6, 6], [1, 1], [0, 0]]], dtype=tf.float32 ), } y_pred = y_true panoptic_metrics.update_state(y_true, y_pred) result = panoptic_metrics.result() self.assertAllEqual(result['valid_thing_classes'], [False, True]) self.assertAllEqual(result['valid_stuff_classes'], [False, False]) self.assertAllClose(result['sq_per_class'], [0.0, 1.0], atol=1e-4) self.assertAllClose(result['rq_per_class'], [0.0, 1.0], atol=1e-4) self.assertAllClose(result['pq_per_class'], [0.0, 1.0], atol=1e-4) def test_totally_wrong(self): panoptic_metrics = panoptic_quality.PanopticQualityV2( name='panoptic_metrics', num_categories=4, ) y_true = { 'category_mask': [[ [1, 1, 1, 1, 1, 1], [1, 2, 2, 2, 2, 1], [1, 2, 2, 2, 2, 1], [1, 2, 2, 2, 2, 1], [1, 2, 2, 1, 1, 1], [1, 2, 1, 1, 1, 1], ]], 'instance_mask': [[ [1, 1, 1, 1, 1, 1], [1, 2, 2, 2, 2, 1], [1, 2, 2, 2, 2, 1], [1, 2, 2, 2, 2, 1], [1, 2, 2, 1, 1, 1], [1, 2, 1, 1, 1, 1], ]], 'image_info': tf.constant( [[[6, 6], [6, 6], [1, 1], [0, 0]]], dtype=tf.float32 ), } y_pred = { 'category_mask': tf.constant(y_true['category_mask']) + 1, 'instance_mask': y_true['instance_mask'], } panoptic_metrics.update_state(y_true, y_pred) result = panoptic_metrics.result() self.assertAllEqual( result['valid_thing_classes'], [False, True, True, True] ) self.assertAllEqual( result['valid_stuff_classes'], [False, False, False, False] ) self.assertAllClose(result['sq_per_class'], [0.0, 0.0, 0.0, 0.0], atol=1e-4) self.assertAllClose(result['rq_per_class'], [0.0, 0.0, 0.0, 0.0], atol=1e-4) self.assertAllClose(result['pq_per_class'], [0.0, 0.0, 0.0, 0.0], atol=1e-4) def test_matches_by_iou(self): panoptic_metrics = panoptic_quality.PanopticQualityV2( name='panoptic_metrics', num_categories=2, ) y_true = { 'category_mask': tf.ones([1, 6, 6], dtype=tf.int32), 'instance_mask': [[ [1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1], [1, 1, 2, 2, 2, 1], [1, 2, 2, 2, 2, 1], [1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1], ]], 'image_info': tf.constant( [[[6, 6], [6, 6], [1, 1], [0, 0]]], dtype=tf.float32 ), } y_pred1 = { 'category_mask': tf.ones([1, 6, 6], dtype=tf.int32), 'instance_mask': [[ [1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1], [1, 2, 2, 2, 2, 1], [1, 2, 2, 2, 1, 1], [1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1], ]], } panoptic_metrics.update_state(y_true, y_pred1) result1 = panoptic_metrics.result() self.assertAllEqual(result1['valid_thing_classes'], [False, True]) self.assertAllEqual(result1['valid_stuff_classes'], [False, False]) self.assertAllClose( result1['sq_per_class'], [0.0, (28 / 30 + 6 / 8) / 2], atol=1e-4 ) self.assertAllClose(result1['rq_per_class'], [0.0, 1.0], atol=1e-4) self.assertAllClose( result1['pq_per_class'], [0.0, (28 / 30 + 6 / 8) / 2], atol=1e-4 ) panoptic_metrics.reset_state() y_pred2 = { 'category_mask': tf.ones([1, 6, 6], dtype=tf.int32), 'instance_mask': [[ [1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1], [1, 1, 1, 2, 2, 1], [1, 1, 1, 2, 2, 1], [1, 1, 1, 2, 2, 1], [1, 1, 1, 1, 1, 1], ]], } panoptic_metrics.update_state(y_true, y_pred2) result2 = panoptic_metrics.result() self.assertAllEqual(result2['valid_thing_classes'], [False, True]) self.assertAllEqual(result2['valid_stuff_classes'], [False, False]) self.assertAllClose(result2['sq_per_class'], [0.0, 27 / 32], atol=1e-4) self.assertAllClose(result2['rq_per_class'], [0.0, 1 / 2], atol=1e-4) self.assertAllClose(result2['pq_per_class'], [0.0, 27 / 64], atol=1e-4) def test_thing_and_stuff(self): panoptic_metrics = panoptic_quality.PanopticQualityV2( name='panoptic_metrics', num_categories=10, is_thing=[ False, True, True, False, True, False, True, False, True, False, ], max_num_instances=15, ignored_label=255, ) y_true = { 'category_mask': [[ [6, 6, 4, 6, 2, 5, 5], [6, 8, 4, 3, 2, 5, 5], ]], 'instance_mask': [[ [1, 1, 2, 5, 3, 0, 0], [1, 6, 2, 0, 4, 0, 0], ]], 'image_info': tf.constant( [[[2, 7], [2, 7], [1, 1], [0, 0]]], dtype=tf.float32 ), } y_pred = { 'category_mask': [[ [6, 4, 4, 6, 2, 255, 255], [6, 6, 4, 3, 255, 255, 7], ]], 'instance_mask': [[ [1, 2, 2, 5, 0, 0, 0], [1, 6, 2, 0, 0, 0, 0], ]], } panoptic_metrics.update_state(y_true, y_pred) result = panoptic_metrics.result() self.assertAllEqual( result['valid_thing_classes'], [False, False, True, False, True, False, True, False, True, False], ) self.assertAllEqual( result['valid_stuff_classes'], [False, False, False, True, False, True, False, True, False, False], ) self.assertAllClose( result['sq_per_class'], [0.0, 0.0, 0.0, 1.0, 0.666667, 0.0, 0.833333, 0.0, 0.0, 0.0], atol=1e-4, ) self.assertAllClose( result['rq_per_class'], [0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.8, 0.0, 0.0, 0.0], atol=1e-4, ) self.assertAllClose( result['pq_per_class'], [0.0, 0.0, 0.0, 1.0, 0.666667, 0.0, 0.666667, 0.0, 0.0, 0.0], atol=1e-4, ) if __name__ == '__main__': absltest.main()