# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for segmentation_metrics.""" from absl.testing import parameterized import tensorflow as tf, tf_keras from official.vision.evaluation import segmentation_metrics class SegmentationMetricsTest(parameterized.TestCase, tf.test.TestCase): def _create_test_data(self): y_pred_cls0 = tf.constant([[1, 1, 0], [1, 1, 0], [0, 0, 0]], dtype=tf.uint16)[tf.newaxis, :, :, tf.newaxis] y_pred_cls1 = tf.constant([[0, 0, 0], [0, 0, 1], [0, 0, 1]], dtype=tf.uint16)[tf.newaxis, :, :, tf.newaxis] y_pred = tf.concat((y_pred_cls0, y_pred_cls1), axis=-1) y_true = { 'masks': tf.constant( [[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 1, 1], [0, 0, 0, 1, 1, 1], [0, 0, 0, 1, 1, 1]], dtype=tf.uint16)[tf.newaxis, :, :, tf.newaxis], 'valid_masks': tf.ones([1, 6, 6, 1], dtype=tf.bool), 'image_info': tf.constant([[[6, 6], [3, 3], [0.5, 0.5], [0, 0]]], dtype=tf.float32) } return y_pred, y_true @parameterized.parameters((True, True), (False, False), (True, False), (False, True)) def test_mean_iou_metric(self, rescale_predictions, use_v2): tf.config.experimental_run_functions_eagerly(True) if use_v2: mean_iou_metric = segmentation_metrics.MeanIoUV2( num_classes=2, rescale_predictions=rescale_predictions) else: mean_iou_metric = segmentation_metrics.MeanIoU( num_classes=2, rescale_predictions=rescale_predictions) y_pred, y_true = self._create_test_data() # Disable autograph for correct coverage statistics. update_fn = tf.autograph.experimental.do_not_convert( mean_iou_metric.update_state) update_fn(y_true=y_true, y_pred=y_pred) miou = mean_iou_metric.result() self.assertAlmostEqual(miou.numpy(), 0.762, places=3) @parameterized.parameters((True, True), (False, False), (True, False), (False, True)) def test_per_class_mean_iou_metric(self, rescale_predictions, use_v2): if use_v2: per_class_iou_metric = segmentation_metrics.PerClassIoUV2( num_classes=2, rescale_predictions=rescale_predictions) else: per_class_iou_metric = segmentation_metrics.PerClassIoU( num_classes=2, rescale_predictions=rescale_predictions) y_pred, y_true = self._create_test_data() # Disable autograph for correct coverage statistics. update_fn = tf.autograph.experimental.do_not_convert( per_class_iou_metric.update_state) update_fn(y_true=y_true, y_pred=y_pred) per_class_miou = per_class_iou_metric.result() self.assertAllClose(per_class_miou.numpy(), [0.857, 0.667], atol=1e-3) def test_mean_iou_metric_v2_target_class_ids(self): tf.config.experimental_run_functions_eagerly(True) mean_iou_metric = segmentation_metrics.MeanIoUV2( num_classes=2, target_class_ids=[0]) y_pred, y_true = self._create_test_data() # Disable autograph for correct coverage statistics. update_fn = tf.autograph.experimental.do_not_convert( mean_iou_metric.update_state) update_fn(y_true=y_true, y_pred=y_pred) miou = mean_iou_metric.result() self.assertAlmostEqual(miou.numpy(), 0.857, places=3) if __name__ == '__main__': tf.test.main()