# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test for image detection export lib.""" import io import os from absl.testing import parameterized import numpy as np from PIL import Image import tensorflow as tf, tf_keras from official.core import exp_factory from official.vision import registry_imports # pylint: disable=unused-import from official.vision.serving import detection class DetectionExportTest(tf.test.TestCase, parameterized.TestCase): def _get_detection_module( self, experiment_name, input_type, outer_boxes_scale=1.0, apply_nms=True, normalized_coordinates=False, nms_version='batched', output_intermediate_features=False, ): params = exp_factory.get_exp_config(experiment_name) params.task.model.outer_boxes_scale = outer_boxes_scale params.task.model.backbone.resnet.model_id = 18 params.task.model.detection_generator.apply_nms = apply_nms if normalized_coordinates: params.task.export_config.output_normalized_coordinates = True params.task.model.detection_generator.nms_version = nms_version if output_intermediate_features: params.task.export_config.output_intermediate_features = True detection_module = detection.DetectionModule( params, batch_size=1, input_image_size=[640, 640], input_type=input_type) return detection_module def _export_from_module(self, module, input_type, save_directory): signatures = module.get_inference_signatures( {input_type: 'serving_default'}) tf.saved_model.save(module, save_directory, signatures=signatures) def _get_dummy_input(self, input_type, batch_size, image_size): """Gets dummy input for the given input type.""" h, w = image_size if input_type == 'image_tensor': return tf.zeros((batch_size, h, w, 3), dtype=np.uint8) elif input_type == 'image_bytes': image = Image.fromarray(np.zeros((h, w, 3), dtype=np.uint8)) byte_io = io.BytesIO() image.save(byte_io, 'PNG') return [byte_io.getvalue() for b in range(batch_size)] elif input_type == 'tf_example': image_tensor = tf.zeros((h, w, 3), dtype=tf.uint8) encoded_jpeg = tf.image.encode_jpeg(tf.constant(image_tensor)).numpy() example = tf.train.Example( features=tf.train.Features( feature={ 'image/encoded': tf.train.Feature( bytes_list=tf.train.BytesList(value=[encoded_jpeg])), })).SerializeToString() return [example for b in range(batch_size)] elif input_type == 'tflite': return tf.zeros((batch_size, h, w, 3), dtype=np.float32) @parameterized.parameters( ('image_tensor', 'fasterrcnn_resnetfpn_coco', [384, 384]), ('image_bytes', 'fasterrcnn_resnetfpn_coco', [640, 640]), ('tf_example', 'fasterrcnn_resnetfpn_coco', [640, 640]), ('tflite', 'fasterrcnn_resnetfpn_coco', [640, 640]), ('image_tensor', 'maskrcnn_resnetfpn_coco', [640, 640]), ('image_bytes', 'maskrcnn_resnetfpn_coco', [640, 384]), ('tf_example', 'maskrcnn_resnetfpn_coco', [640, 640]), ('tflite', 'maskrcnn_resnetfpn_coco', [640, 640]), ('image_tensor', 'retinanet_resnetfpn_coco', [640, 640]), ('image_bytes', 'retinanet_resnetfpn_coco', [640, 640]), ('tf_example', 'retinanet_resnetfpn_coco', [384, 640]), ('tflite', 'retinanet_resnetfpn_coco', [640, 640]), ('image_tensor', 'retinanet_resnetfpn_coco', [384, 384]), ('image_bytes', 'retinanet_spinenet_coco', [640, 640]), ('tf_example', 'retinanet_spinenet_coco', [640, 384]), ('tflite', 'retinanet_spinenet_coco', [640, 640]), ('image_tensor', 'fasterrcnn_resnetfpn_coco', [384, 384], 1.1), ('tf_example', 'maskrcnn_resnetfpn_coco', [640, 640], 1.1), ('image_tensor', 'fasterrcnn_resnetfpn_coco', [384, 384], 1.1, 'v2'), ) def test_export( self, input_type, experiment_name, image_size, outer_boxes_scale=1.0, nms_version='batched', ): tmp_dir = self.get_temp_dir() module = self._get_detection_module( experiment_name, input_type, outer_boxes_scale, nms_version) self._export_from_module(module, input_type, tmp_dir) self.assertTrue(os.path.exists(os.path.join(tmp_dir, 'saved_model.pb'))) self.assertTrue( os.path.exists(os.path.join(tmp_dir, 'variables', 'variables.index'))) self.assertTrue( os.path.exists( os.path.join(tmp_dir, 'variables', 'variables.data-00000-of-00001'))) imported = tf.saved_model.load(tmp_dir) detection_fn = imported.signatures['serving_default'] images = self._get_dummy_input( input_type, batch_size=1, image_size=image_size) signatures = module.get_inference_signatures( {input_type: 'serving_default'}) expected_outputs = signatures['serving_default'](tf.constant(images)) outputs = detection_fn(tf.constant(images)) self.assertAllEqual(outputs['detection_boxes'].numpy(), expected_outputs['detection_boxes'].numpy()) # Outer boxes have not been supported in RetinaNet models. if 'retinanet' not in experiment_name: if module.params.task.model.include_mask and outer_boxes_scale > 1.0: self.assertAllEqual(outputs['detection_outer_boxes'].numpy(), expected_outputs['detection_outer_boxes'].numpy()) self.assertAllEqual(outputs['detection_classes'].numpy(), expected_outputs['detection_classes'].numpy()) self.assertAllEqual(outputs['detection_scores'].numpy(), expected_outputs['detection_scores'].numpy()) self.assertAllEqual(outputs['num_detections'].numpy(), expected_outputs['num_detections'].numpy()) @parameterized.parameters(('retinanet_resnetfpn_coco',), ('maskrcnn_spinenet_coco',)) def test_build_model_pass_with_none_batch_size(self, experiment_type): params = exp_factory.get_exp_config(experiment_type) detection.DetectionModule( params, batch_size=None, input_image_size=[640, 640]) def test_export_retinanet_with_intermediate_features(self): tmp_dir = self.get_temp_dir() input_type = 'image_tensor' module = self._get_detection_module( 'retinanet_resnetfpn_coco', input_type, output_intermediate_features=True, ) self._export_from_module(module, input_type, tmp_dir) imported = tf.saved_model.load(tmp_dir) detection_fn = imported.signatures['serving_default'] images = self._get_dummy_input( input_type, batch_size=1, image_size=[384, 384] ) outputs = detection_fn(tf.constant(images)) self.assertContainsSubset( { 'backbone_3', 'backbone_4', 'backbone_5', 'decoder_3', 'decoder_4', 'decoder_5', 'decoder_6', 'decoder_7', }, outputs.keys(), ) @parameterized.parameters( ('image_tensor', 'retinanet_resnetfpn_coco', [640, 640]), ('image_bytes', 'retinanet_resnetfpn_coco', [640, 640]), ('tf_example', 'retinanet_resnetfpn_coco', [384, 640]), ('tflite', 'retinanet_resnetfpn_coco', [640, 640]), ('image_tensor', 'retinanet_resnetfpn_coco', [384, 384]), ('image_bytes', 'retinanet_spinenet_coco', [640, 640]), ('tf_example', 'retinanet_spinenet_coco', [640, 384]), ('tflite', 'retinanet_spinenet_coco', [640, 640]), ) def test_export_normalized_coordinates_no_nms( self, input_type, experiment_name, image_size, ): tmp_dir = self.get_temp_dir() module = self._get_detection_module( experiment_name, input_type, apply_nms=False, normalized_coordinates=True, ) self._export_from_module(module, input_type, tmp_dir) imported = tf.saved_model.load(tmp_dir) detection_fn = imported.signatures['serving_default'] images = self._get_dummy_input( input_type, batch_size=1, image_size=image_size ) outputs = detection_fn(tf.constant(images)) min_values = tf.math.reduce_min(outputs['decoded_boxes']) max_values = tf.math.reduce_max(outputs['decoded_boxes']) self.assertAllGreaterEqual( min_values.numpy(), tf.zeros_like(min_values).numpy() ) self.assertAllLessEqual( max_values.numpy(), tf.ones_like(max_values).numpy() ) if __name__ == '__main__': tf.test.main()