# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Base class for model export.""" from typing import Dict, Optional, Text, Callable, Any, Union import tensorflow as tf, tf_keras from official.core import export_base class ExportModule(export_base.ExportModule): """Base Export Module.""" def __init__(self, params, model: tf_keras.Model, input_signature: Union[tf.TensorSpec, Dict[str, tf.TensorSpec]], preprocessor: Optional[Callable[..., Any]] = None, inference_step: Optional[Callable[..., Any]] = None, postprocessor: Optional[Callable[..., Any]] = None): """Initializes a module for export. Args: params: A dataclass for parameters to the module. model: A tf_keras.Model instance to be exported. input_signature: tf.TensorSpec, e.g. tf.TensorSpec(shape=[None, 224, 224, 3], dtype=tf.uint8) preprocessor: An optional callable to preprocess the inputs. inference_step: An optional callable to forward-pass the model. postprocessor: An optional callable to postprocess the model outputs. """ super().__init__( params, model=model, preprocessor=preprocessor, inference_step=inference_step, postprocessor=postprocessor) self.input_signature = input_signature @tf.function def serve(self, inputs): x = self.preprocessor(inputs=inputs) if self.preprocessor else inputs x = self.inference_step(x) x = self.postprocessor(x) if self.postprocessor else x return x def get_inference_signatures(self, function_keys: Dict[Text, Text]): """Gets defined function signatures. Args: function_keys: A dictionary with keys as the function to create signature for and values as the signature keys when returns. Returns: A dictionary with key as signature key and value as concrete functions that can be used for tf.saved_model.save. """ signatures = {} for _, def_name in function_keys.items(): signatures[def_name] = self.serve.get_concrete_function( self.input_signature) return signatures