# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test for semantic segmentation export lib.""" import io import os from absl.testing import parameterized import numpy as np from PIL import Image import tensorflow as tf, tf_keras from official.core import exp_factory from official.vision import registry_imports # pylint: disable=unused-import from official.vision.serving import semantic_segmentation class SemanticSegmentationExportTest(tf.test.TestCase, parameterized.TestCase): def _get_segmentation_module(self, input_type, rescale_output, preserve_aspect_ratio, batch_size=1): params = exp_factory.get_exp_config('mnv2_deeplabv3_pascal') params.task.export_config.rescale_output = rescale_output params.task.train_data.preserve_aspect_ratio = preserve_aspect_ratio segmentation_module = semantic_segmentation.SegmentationModule( params, batch_size=batch_size, input_image_size=[112, 112], input_type=input_type) return segmentation_module def _export_from_module(self, module, input_type, save_directory): signatures = module.get_inference_signatures( {input_type: 'serving_default'}) tf.saved_model.save(module, save_directory, signatures=signatures) def _get_dummy_input(self, input_type, input_image_size): """Get dummy input for the given input type.""" height = input_image_size[0] width = input_image_size[1] if input_type == 'image_tensor': return tf.zeros((1, height, width, 3), dtype=np.uint8) elif input_type == 'image_bytes': image = Image.fromarray(np.zeros((height, width, 3), dtype=np.uint8)) byte_io = io.BytesIO() image.save(byte_io, 'PNG') return [byte_io.getvalue()] elif input_type == 'tf_example': image_tensor = tf.zeros((height, width, 3), dtype=tf.uint8) encoded_jpeg = tf.image.encode_jpeg(tf.constant(image_tensor)).numpy() example = tf.train.Example( features=tf.train.Features( feature={ 'image/encoded': tf.train.Feature( bytes_list=tf.train.BytesList(value=[encoded_jpeg])), })).SerializeToString() return [example] elif input_type == 'tflite': return tf.zeros((1, height, width, 3), dtype=np.float32) @parameterized.parameters( ('image_tensor', False, [112, 112], False), ('image_bytes', False, [112, 112], False), ('tf_example', False, [112, 112], True), ('tflite', False, [112, 112], False), ('image_tensor', True, [112, 56], True), ('image_bytes', True, [112, 56], True), ('tf_example', True, [56, 112], False), ) def test_export(self, input_type, rescale_output, input_image_size, preserve_aspect_ratio): tmp_dir = self.get_temp_dir() module = self._get_segmentation_module( input_type=input_type, rescale_output=rescale_output, preserve_aspect_ratio=preserve_aspect_ratio) self._export_from_module(module, input_type, tmp_dir) self.assertTrue(os.path.exists(os.path.join(tmp_dir, 'saved_model.pb'))) self.assertTrue( os.path.exists(os.path.join(tmp_dir, 'variables', 'variables.index'))) self.assertTrue( os.path.exists( os.path.join(tmp_dir, 'variables', 'variables.data-00000-of-00001'))) imported = tf.saved_model.load(tmp_dir) segmentation_fn = imported.signatures['serving_default'] images = self._get_dummy_input(input_type, input_image_size) if input_type != 'tflite': processed_images, _ = tf.nest.map_structure( tf.stop_gradient, tf.map_fn( module._build_inputs, elems=tf.zeros((1, 112, 112, 3), dtype=tf.uint8), fn_output_signature=(tf.TensorSpec( shape=[112, 112, 3], dtype=tf.float32), tf.TensorSpec( shape=[4, 2], dtype=tf.float32)))) else: processed_images = images logits = module.model(processed_images, training=False)['logits'] if rescale_output: expected_output = tf.image.resize( logits, input_image_size, method='bilinear') else: expected_output = tf.image.resize(logits, [112, 112], method='bilinear') out = segmentation_fn(tf.constant(images)) self.assertAllClose(out['logits'].numpy(), expected_output.numpy()) def test_export_invalid_batch_size(self): batch_size = 3 tmp_dir = self.get_temp_dir() module = self._get_segmentation_module( input_type='image_tensor', rescale_output=True, preserve_aspect_ratio=False, batch_size=batch_size) with self.assertRaisesRegex(ValueError, 'Batch size cannot be more than 1.'): self._export_from_module(module, 'image_tensor', tmp_dir) if __name__ == '__main__': tf.test.main()