# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for EfficientNet.""" # Import libraries from absl.testing import parameterized import tensorflow as tf, tf_keras from official.vision.modeling.backbones import efficientnet class EfficientNetTest(parameterized.TestCase, tf.test.TestCase): @parameterized.parameters(32, 224) def test_network_creation(self, input_size): """Test creation of EfficientNet family models.""" tf_keras.backend.set_image_data_format('channels_last') network = efficientnet.EfficientNet(model_id='b0') inputs = tf_keras.Input(shape=(input_size, input_size, 3), batch_size=1) endpoints = network(inputs) self.assertAllEqual([1, input_size / 2**2, input_size / 2**2, 24], endpoints['2'].shape.as_list()) self.assertAllEqual([1, input_size / 2**3, input_size / 2**3, 40], endpoints['3'].shape.as_list()) self.assertAllEqual([1, input_size / 2**4, input_size / 2**4, 112], endpoints['4'].shape.as_list()) self.assertAllEqual([1, input_size / 2**5, input_size / 2**5, 320], endpoints['5'].shape.as_list()) @parameterized.parameters('b0', 'b3', 'b6') def test_network_scaling(self, model_id): """Test compound scaling.""" efficientnet_params = { 'b0': 4049564, 'b3': 10783528, 'b6': 40960136, } tf_keras.backend.set_image_data_format('channels_last') input_size = 32 network = efficientnet.EfficientNet(model_id=model_id, se_ratio=0.25) self.assertEqual(network.count_params(), efficientnet_params[model_id]) inputs = tf_keras.Input(shape=(input_size, input_size, 3), batch_size=1) _ = network(inputs) @parameterized.parameters(1, 3) def test_input_specs(self, input_dim): """Test different input feature dimensions.""" tf_keras.backend.set_image_data_format('channels_last') input_specs = tf_keras.layers.InputSpec(shape=[None, None, None, input_dim]) network = efficientnet.EfficientNet(model_id='b0', input_specs=input_specs) inputs = tf_keras.Input(shape=(128, 128, input_dim), batch_size=1) _ = network(inputs) def test_serialize_deserialize(self): # Create a network object that sets all of its config options. kwargs = dict( model_id='b0', se_ratio=0.25, stochastic_depth_drop_rate=None, use_sync_bn=False, kernel_initializer='VarianceScaling', kernel_regularizer=None, bias_regularizer=None, activation='relu', norm_momentum=0.99, norm_epsilon=0.001, ) network = efficientnet.EfficientNet(**kwargs) expected_config = dict(kwargs) self.assertEqual(network.get_config(), expected_config) # Create another network object from the first object's config. new_network = efficientnet.EfficientNet.from_config(network.get_config()) # Validate that the config can be forced to JSON. _ = new_network.to_json() # If the serialization was successful, the new config should match the old. self.assertAllEqual(network.get_config(), new_network.get_config()) if __name__ == '__main__': tf.test.main()