# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for Mobiledet.""" import itertools from absl.testing import parameterized import tensorflow as tf, tf_keras from official.vision.modeling.backbones import mobiledet class MobileDetTest(parameterized.TestCase, tf.test.TestCase): @parameterized.parameters( 'MobileDetCPU', 'MobileDetDSP', 'MobileDetEdgeTPU', 'MobileDetGPU', ) def test_serialize_deserialize(self, model_id): # Create a network object that sets all of its config options. kwargs = dict( model_id=model_id, filter_size_scale=1.0, use_sync_bn=False, kernel_initializer='VarianceScaling', kernel_regularizer=None, bias_regularizer=None, norm_momentum=0.99, norm_epsilon=0.001, min_depth=8, divisible_by=8, regularize_depthwise=False, ) network = mobiledet.MobileDet(**kwargs) expected_config = dict(kwargs) self.assertEqual(network.get_config(), expected_config) # Create another network object from the first object's config. new_network = mobiledet.MobileDet.from_config(network.get_config()) # Validate that the config can be forced to JSON. _ = new_network.to_json() # If the serialization was successful, the new config should match the old. self.assertAllEqual(network.get_config(), new_network.get_config()) @parameterized.parameters( itertools.product( [1, 3], [ 'MobileDetCPU', 'MobileDetDSP', 'MobileDetEdgeTPU', 'MobileDetGPU', ], )) def test_input_specs(self, input_dim, model_id): """Test different input feature dimensions.""" tf_keras.backend.set_image_data_format('channels_last') input_specs = tf_keras.layers.InputSpec(shape=[None, None, None, input_dim]) network = mobiledet.MobileDet(model_id=model_id, input_specs=input_specs) inputs = tf_keras.Input(shape=(128, 128, input_dim), batch_size=1) _ = network(inputs) @parameterized.parameters( itertools.product( [ 'MobileDetCPU', 'MobileDetDSP', 'MobileDetEdgeTPU', 'MobileDetGPU', ], [32, 224], )) def test_mobiledet_creation(self, model_id, input_size): """Test creation of MobileDet family models.""" tf_keras.backend.set_image_data_format('channels_last') mobiledet_layers = { # The number of filters of layers having outputs been collected # for filter_size_scale = 1.0 'MobileDetCPU': [8, 16, 32, 72, 144], 'MobileDetDSP': [24, 32, 64, 144, 240], 'MobileDetEdgeTPU': [16, 16, 40, 96, 384], 'MobileDetGPU': [16, 32, 64, 128, 384], } network = mobiledet.MobileDet(model_id=model_id, filter_size_scale=1.0) inputs = tf_keras.Input(shape=(input_size, input_size, 3), batch_size=1) endpoints = network(inputs) for idx, num_filter in enumerate(mobiledet_layers[model_id]): self.assertAllEqual( [1, input_size / 2 ** (idx+1), input_size / 2 ** (idx+1), num_filter], endpoints[str(idx+1)].shape.as_list())