# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for RevNet.""" # Import libraries from absl.testing import parameterized import tensorflow as tf, tf_keras from official.vision.modeling.backbones import revnet class RevNetTest(parameterized.TestCase, tf.test.TestCase): @parameterized.parameters( (128, 56, 4), (128, 104, 4), ) def test_network_creation(self, input_size, model_id, endpoint_filter_scale): """Test creation of RevNet family models.""" tf_keras.backend.set_image_data_format('channels_last') network = revnet.RevNet(model_id=model_id) inputs = tf_keras.Input(shape=(input_size, input_size, 3), batch_size=1) endpoints = network(inputs) network.summary() self.assertAllEqual( [1, input_size / 2**2, input_size / 2**2, 128 * endpoint_filter_scale], endpoints['2'].shape.as_list()) self.assertAllEqual( [1, input_size / 2**3, input_size / 2**3, 256 * endpoint_filter_scale], endpoints['3'].shape.as_list()) self.assertAllEqual( [1, input_size / 2**4, input_size / 2**4, 512 * endpoint_filter_scale], endpoints['4'].shape.as_list()) self.assertAllEqual( [1, input_size / 2**5, input_size / 2**5, 832 * endpoint_filter_scale], endpoints['5'].shape.as_list()) @parameterized.parameters(1, 3, 4) def test_input_specs(self, input_dim): """Test different input feature dimensions.""" tf_keras.backend.set_image_data_format('channels_last') input_specs = tf_keras.layers.InputSpec(shape=[None, None, None, input_dim]) network = revnet.RevNet(model_id=56, input_specs=input_specs) inputs = tf_keras.Input(shape=(128, 128, input_dim), batch_size=1) _ = network(inputs) def test_serialize_deserialize(self): # Create a network object that sets all of its config options. kwargs = dict( model_id=56, activation='relu', use_sync_bn=False, norm_momentum=0.99, norm_epsilon=0.001, kernel_initializer='VarianceScaling', kernel_regularizer=None, ) network = revnet.RevNet(**kwargs) expected_config = dict(kwargs) self.assertEqual(network.get_config(), expected_config) # Create another network object from the first object's config. new_network = revnet.RevNet.from_config(network.get_config()) # Validate that the config can be forced to JSON. _ = new_network.to_json() # If the serialization was successful, the new config should match the old. self.assertAllEqual(network.get_config(), new_network.get_config()) if __name__ == '__main__': tf.test.main()