# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Examples of SavedModel export for tf-serving.""" from absl import app from absl import flags import tensorflow as tf, tf_keras from official.legacy.bert import bert_models from official.legacy.bert import configs flags.DEFINE_integer( "sequence_length", None, "Sequence length to parse the tf.Example. If " "sequence_length > 0, add a signature for serialized " "tf.Example and define the parsing specification by the " "sequence_length.") flags.DEFINE_string("bert_config_file", None, "Bert configuration file to define core bert layers.") flags.DEFINE_string("model_checkpoint_path", None, "File path to TF model checkpoint.") flags.DEFINE_string("export_path", None, "Destination folder to export the serving SavedModel.") FLAGS = flags.FLAGS class BertServing(tf_keras.Model): """Bert transformer encoder model for serving.""" def __init__(self, bert_config, name_to_features=None, name="serving_model"): super(BertServing, self).__init__(name=name) self.encoder = bert_models.get_transformer_encoder( bert_config, sequence_length=None) self.name_to_features = name_to_features def call(self, inputs): input_word_ids = inputs["input_ids"] input_mask = inputs["input_mask"] input_type_ids = inputs["segment_ids"] encoder_outputs, _ = self.encoder( [input_word_ids, input_mask, input_type_ids]) return encoder_outputs def serve_body(self, input_ids, input_mask=None, segment_ids=None): if segment_ids is None: # Requires CLS token is the first token of inputs. segment_ids = tf.zeros_like(input_ids) if input_mask is None: # The mask has 1 for real tokens and 0 for padding tokens. input_mask = tf.where( tf.equal(input_ids, 0), tf.zeros_like(input_ids), tf.ones_like(input_ids)) inputs = dict( input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids) return self.call(inputs) @tf.function def serve(self, input_ids, input_mask=None, segment_ids=None): outputs = self.serve_body(input_ids, input_mask, segment_ids) # Returns a dictionary to control SignatureDef output signature. return {"outputs": outputs[-1]} @tf.function def serve_examples(self, inputs): features = tf.io.parse_example(inputs, self.name_to_features) for key in list(features.keys()): t = features[key] if t.dtype == tf.int64: t = tf.cast(t, tf.int32) features[key] = t return self.serve( features["input_ids"], input_mask=features["input_mask"] if "input_mask" in features else None, segment_ids=features["segment_ids"] if "segment_ids" in features else None) @classmethod def export(cls, model, export_dir): if not isinstance(model, cls): raise ValueError("Invalid model instance: %s, it should be a %s" % (model, cls)) signatures = { "serving_default": model.serve.get_concrete_function( input_ids=tf.TensorSpec( shape=[None, None], dtype=tf.int32, name="inputs")), } if model.name_to_features: signatures[ "serving_examples"] = model.serve_examples.get_concrete_function( tf.TensorSpec(shape=[None], dtype=tf.string, name="examples")) tf.saved_model.save(model, export_dir=export_dir, signatures=signatures) def main(_): sequence_length = FLAGS.sequence_length if sequence_length is not None and sequence_length > 0: name_to_features = { "input_ids": tf.io.FixedLenFeature([sequence_length], tf.int64), "input_mask": tf.io.FixedLenFeature([sequence_length], tf.int64), "segment_ids": tf.io.FixedLenFeature([sequence_length], tf.int64), } else: name_to_features = None bert_config = configs.BertConfig.from_json_file(FLAGS.bert_config_file) serving_model = BertServing( bert_config=bert_config, name_to_features=name_to_features) checkpoint = tf.train.Checkpoint(model=serving_model.encoder) checkpoint.restore(FLAGS.model_checkpoint_path ).assert_existing_objects_matched().run_restore_ops() BertServing.export(serving_model, FLAGS.export_path) if __name__ == "__main__": flags.mark_flag_as_required("bert_config_file") flags.mark_flag_as_required("model_checkpoint_path") flags.mark_flag_as_required("export_path") app.run(main)