# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Optimizers.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import tensorflow as tf, tf_keras class OptimizerFactory(object): """Class to generate optimizer function.""" def __init__(self, params): """Creates optimized based on the specified flags.""" if params.type == 'momentum': self._optimizer = functools.partial( tf_keras.optimizers.SGD, momentum=params.momentum, nesterov=params.nesterov) elif params.type == 'adam': self._optimizer = tf_keras.optimizers.Adam elif params.type == 'adadelta': self._optimizer = tf_keras.optimizers.Adadelta elif params.type == 'adagrad': self._optimizer = tf_keras.optimizers.Adagrad elif params.type == 'rmsprop': self._optimizer = functools.partial( tf_keras.optimizers.RMSprop, momentum=params.momentum) else: raise ValueError('Unsupported optimizer type `{}`.'.format(params.type)) def __call__(self, learning_rate): return self._optimizer(learning_rate=learning_rate)