# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for third_party.tensorflow_models.official.nlp.data.classifier_data_lib.""" import os import tempfile from absl.testing import parameterized import tensorflow as tf, tf_keras import tensorflow_datasets as tfds from official.nlp.data import classifier_data_lib from official.nlp.tools import tokenization def decode_record(record, name_to_features): """Decodes a record to a TensorFlow example.""" return tf.io.parse_single_example(record, name_to_features) class BertClassifierLibTest(tf.test.TestCase, parameterized.TestCase): def setUp(self): super(BertClassifierLibTest, self).setUp() self.model_dir = self.get_temp_dir() self.processors = { "CB": classifier_data_lib.CBProcessor, "SUPERGLUE-RTE": classifier_data_lib.SuperGLUERTEProcessor, "BOOLQ": classifier_data_lib.BoolQProcessor, "WIC": classifier_data_lib.WiCProcessor, } vocab_tokens = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", "," ] with tempfile.NamedTemporaryFile(delete=False) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens ]).encode("utf-8")) vocab_file = vocab_writer.name self.tokenizer = tokenization.FullTokenizer(vocab_file) @parameterized.parameters( {"task_type": "CB"}, {"task_type": "BOOLQ"}, {"task_type": "SUPERGLUE-RTE"}, {"task_type": "WIC"}, ) def test_generate_dataset_from_tfds_processor(self, task_type): with tfds.testing.mock_data(num_examples=5): output_path = os.path.join(self.model_dir, task_type) processor = self.processors[task_type]() classifier_data_lib.generate_tf_record_from_data_file( processor, None, self.tokenizer, train_data_output_path=output_path, eval_data_output_path=output_path, test_data_output_path=output_path) files = tf.io.gfile.glob(output_path) self.assertNotEmpty(files) train_dataset = tf.data.TFRecordDataset(output_path) seq_length = 128 label_type = tf.int64 name_to_features = { "input_ids": tf.io.FixedLenFeature([seq_length], tf.int64), "input_mask": tf.io.FixedLenFeature([seq_length], tf.int64), "segment_ids": tf.io.FixedLenFeature([seq_length], tf.int64), "label_ids": tf.io.FixedLenFeature([], label_type), } train_dataset = train_dataset.map( lambda record: decode_record(record, name_to_features)) # If data is retrieved without error, then all requirements # including data type/shapes are met. _ = next(iter(train_dataset)) if __name__ == "__main__": tf.test.main()