# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for ELECTRA pre trainer network.""" import tensorflow as tf, tf_keras from official.nlp.modeling import networks from official.nlp.modeling.models import electra_pretrainer class ElectraPretrainerTest(tf.test.TestCase): def test_electra_pretrainer(self): """Validate that the Keras object can be created.""" # Build a transformer network to use within the ELECTRA trainer. vocab_size = 100 sequence_length = 512 test_generator_network = networks.BertEncoder( vocab_size=vocab_size, num_layers=2, max_sequence_length=sequence_length, dict_outputs=True) test_discriminator_network = networks.BertEncoder( vocab_size=vocab_size, num_layers=2, max_sequence_length=sequence_length, dict_outputs=True) # Create a ELECTRA trainer with the created network. num_classes = 3 num_token_predictions = 2 eletrca_trainer_model = electra_pretrainer.ElectraPretrainer( generator_network=test_generator_network, discriminator_network=test_discriminator_network, vocab_size=vocab_size, num_classes=num_classes, num_token_predictions=num_token_predictions, disallow_correct=True) # Create a set of 2-dimensional inputs (the first dimension is implicit). word_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) mask = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) type_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) lm_positions = tf_keras.Input( shape=(num_token_predictions,), dtype=tf.int32) lm_ids = tf_keras.Input(shape=(num_token_predictions,), dtype=tf.int32) inputs = { 'input_word_ids': word_ids, 'input_mask': mask, 'input_type_ids': type_ids, 'masked_lm_positions': lm_positions, 'masked_lm_ids': lm_ids } # Invoke the trainer model on the inputs. This causes the layer to be built. outputs = eletrca_trainer_model(inputs) lm_outs = outputs['lm_outputs'] cls_outs = outputs['sentence_outputs'] disc_logits = outputs['disc_logits'] disc_label = outputs['disc_label'] # Validate that the outputs are of the expected shape. expected_lm_shape = [None, num_token_predictions, vocab_size] expected_classification_shape = [None, num_classes] expected_disc_logits_shape = [None, sequence_length] expected_disc_label_shape = [None, sequence_length] self.assertAllEqual(expected_lm_shape, lm_outs.shape.as_list()) self.assertAllEqual(expected_classification_shape, cls_outs.shape.as_list()) self.assertAllEqual(expected_disc_logits_shape, disc_logits.shape.as_list()) self.assertAllEqual(expected_disc_label_shape, disc_label.shape.as_list()) def test_electra_trainer_tensor_call(self): """Validate that the Keras object can be invoked.""" # Build a transformer network to use within the ELECTRA trainer. (Here, we # use a short sequence_length for convenience.) test_generator_network = networks.BertEncoder( vocab_size=100, num_layers=4, max_sequence_length=3, dict_outputs=True) test_discriminator_network = networks.BertEncoder( vocab_size=100, num_layers=4, max_sequence_length=3, dict_outputs=True) # Create a ELECTRA trainer with the created network. eletrca_trainer_model = electra_pretrainer.ElectraPretrainer( generator_network=test_generator_network, discriminator_network=test_discriminator_network, vocab_size=100, num_classes=2, num_token_predictions=2) # Create a set of 2-dimensional data tensors to feed into the model. word_ids = tf.constant([[1, 1, 1], [2, 2, 2]], dtype=tf.int32) mask = tf.constant([[1, 1, 1], [1, 0, 0]], dtype=tf.int32) type_ids = tf.constant([[1, 1, 1], [2, 2, 2]], dtype=tf.int32) lm_positions = tf.constant([[0, 1], [0, 2]], dtype=tf.int32) lm_ids = tf.constant([[10, 20], [20, 30]], dtype=tf.int32) inputs = { 'input_word_ids': word_ids, 'input_mask': mask, 'input_type_ids': type_ids, 'masked_lm_positions': lm_positions, 'masked_lm_ids': lm_ids } # Invoke the trainer model on the tensors. In Eager mode, this does the # actual calculation. (We can't validate the outputs, since the network is # too complex: this simply ensures we're not hitting runtime errors.) _ = eletrca_trainer_model(inputs) def test_serialize_deserialize(self): """Validate that the ELECTRA trainer can be serialized and deserialized.""" # Build a transformer network to use within the BERT trainer. (Here, we use # a short sequence_length for convenience.) test_generator_network = networks.BertEncoder( vocab_size=100, num_layers=4, max_sequence_length=3) test_discriminator_network = networks.BertEncoder( vocab_size=100, num_layers=4, max_sequence_length=3) # Create a ELECTRA trainer with the created network. (Note that all the args # are different, so we can catch any serialization mismatches.) electra_trainer_model = electra_pretrainer.ElectraPretrainer( generator_network=test_generator_network, discriminator_network=test_discriminator_network, vocab_size=100, num_classes=2, num_token_predictions=2) # Create another BERT trainer via serialization and deserialization. config = electra_trainer_model.get_config() new_electra_trainer_model = electra_pretrainer.ElectraPretrainer.from_config( config) # Validate that the config can be forced to JSON. _ = new_electra_trainer_model.to_json() # If the serialization was successful, the new config should match the old. self.assertAllEqual(electra_trainer_model.get_config(), new_electra_trainer_model.get_config()) if __name__ == '__main__': tf.test.main()