task: hub_module_url: '' model: num_classes: 3 init_checkpoint: '' metric_type: 'accuracy' train_data: drop_remainder: true global_batch_size: 32 input_path: '' is_training: true seq_length: 128 label_type: 'int' validation_data: drop_remainder: false global_batch_size: 32 input_path: '' is_training: false seq_length: 128 label_type: 'int' trainer: checkpoint_interval: 3000 optimizer_config: learning_rate: polynomial: # 100% of train_steps. decay_steps: 36813 end_learning_rate: 0.0 initial_learning_rate: 3.0e-05 power: 1.0 type: polynomial optimizer: type: adamw warmup: polynomial: power: 1 # ~10% of train_steps. warmup_steps: 3681 type: polynomial steps_per_loop: 1000 summary_interval: 1000 # Training data size 392,702 examples, 3 epochs. train_steps: 36813 validation_interval: 6135 # Eval data size = 9815 examples. validation_steps: 307 best_checkpoint_export_subdir: 'best_ckpt' best_checkpoint_eval_metric: 'cls_accuracy' best_checkpoint_metric_comp: 'higher'