# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for pack_optimization.""" import tensorflow as tf, tf_keras from official.nlp.modeling.layers import pack_optimization class PackOptimizationTest(tf.test.TestCase): def test_bert_embedding_packing(self): batch_size, seq_len, embed_dim = 2, 4, 8 pack_sequences = 2 token_and_position_embed = tf.ones((batch_size, seq_len, embed_dim), dtype=tf.float32) input_mask = tf.ones((batch_size, seq_len), dtype=tf.int32) layer = pack_optimization.PackBertEmbeddings(pack_sequences=pack_sequences) outputs = layer(token_and_position_embed, input_mask) self.assertEqual(outputs["packed_embeddings"].shape, (1, 8, embed_dim)) self.assertEqual(outputs["combined_attention_mask"].shape, (1, 8, 8)) def test_strided_transformer_encoder_block(self): inputs = tf.zeros((2, 4, 8), dtype=tf.float32) attention_mask = tf.ones((2, 4, 4), dtype=tf.float32) transformer = pack_optimization.StridedTransformerEncoderBlock( num_attention_heads=2, inner_dim=4, inner_activation="relu") outputs = transformer([inputs, attention_mask], stride=tf.constant(2, dtype=tf.int32)) self.assertEqual(outputs.shape, (2, 2, 8)) def test_strided_rezero_transformer(self): inputs = tf.zeros((2, 4, 8), dtype=tf.float32) attention_mask = tf.ones((2, 4, 4), dtype=tf.float32) transformer = pack_optimization.StridedReZeroTransformer( num_attention_heads=2, inner_dim=4, inner_activation="relu") outputs = transformer([inputs, attention_mask], stride=tf.constant(2, dtype=tf.int32)) self.assertEqual(outputs.shape, (2, 2, 8)) def test_strided_scaffold(self): inputs = tf.zeros((2, 4, 8), dtype=tf.float32) attention_mask = tf.ones((2, 4, 4), dtype=tf.float32) test_layer = pack_optimization.StridedTransformerScaffold( num_attention_heads=2, inner_dim=128, inner_activation="relu") outputs = test_layer([inputs, attention_mask], stride=tf.constant(2, dtype=tf.int32)) self.assertEqual(outputs.shape, (2, 2, 8)) if __name__ == "__main__": tf.test.main()