# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for the attention layer.""" from absl.testing import parameterized import numpy as np import tensorflow as tf, tf_keras from official.nlp.modeling.layers import reuse_attention as attention class ReuseMultiHeadAttentionTest(tf.test.TestCase, parameterized.TestCase): @parameterized.named_parameters( ("key_value_same_proj", None, None, [40, 80]), ("key_value_different_proj", 32, 60, [40, 60]), ) def test_non_masked_attention(self, value_dim, output_shape, output_dims): """Test that the attention layer can be created without a mask tensor.""" test_layer = attention.ReuseMultiHeadAttention( num_heads=12, key_dim=64, value_dim=value_dim, output_shape=output_shape) # Create a 3-dimensional input (the first dimension is implicit). query = tf_keras.Input(shape=(40, 80)) value = tf_keras.Input(shape=(20, 80)) output = test_layer(query=query, value=value) self.assertEqual(output.shape.as_list(), [None] + output_dims) def test_non_masked_self_attention(self): """Test with one input (self-attenntion) and no mask tensor.""" test_layer = attention.ReuseMultiHeadAttention( num_heads=12, key_dim=64) # Create a 3-dimensional input (the first dimension is implicit). query = tf_keras.Input(shape=(40, 80)) output = test_layer(query, query) self.assertEqual(output.shape.as_list(), [None, 40, 80]) def test_attention_scores(self): """Test attention outputs with coefficients.""" test_layer = attention.ReuseMultiHeadAttention( num_heads=12, key_dim=64) # Create a 3-dimensional input (the first dimension is implicit). query = tf_keras.Input(shape=(40, 80)) output, coef = test_layer(query, query, return_attention_scores=True) self.assertEqual(output.shape.as_list(), [None, 40, 80]) self.assertEqual(coef.shape.as_list(), [None, 12, 40, 40]) def test_attention_scores_with_values(self): """Test attention outputs with coefficients.""" test_layer = attention.ReuseMultiHeadAttention( num_heads=12, key_dim=64) # Create a 3-dimensional input (the first dimension is implicit). query = tf_keras.Input(shape=(40, 80)) value = tf_keras.Input(shape=(60, 80)) output, coef = test_layer(query, value, return_attention_scores=True) self.assertEqual(output.shape.as_list(), [None, 40, 80]) self.assertEqual(coef.shape.as_list(), [None, 12, 40, 60]) @parameterized.named_parameters( ("with_bias", True, 0), ("no_bias", False, 0), ("reuse_all_with_bias", True, -1), ("reuse_all_no_bias", False, -1), ("reuse_partial_with_bias", True, 1), ("reuse_partial_no_bias", False, 1)) def test_masked_attention(self, use_bias, reuse_attention): """Test with a mask tensor.""" test_layer = attention.ReuseMultiHeadAttention( num_heads=2, key_dim=2, use_bias=use_bias, reuse_attention=reuse_attention) # Create a 3-dimensional input (the first dimension is implicit). batch_size = 3 query = tf_keras.Input(shape=(4, 8)) value = tf_keras.Input(shape=(2, 8)) mask_tensor = tf_keras.Input(shape=(4, 2)) reuse_attention_scores = tf_keras.Input(shape=(2, 4, 2)) output = test_layer(query=query, value=value, attention_mask=mask_tensor, reuse_attention_scores=reuse_attention_scores) # Create a model containing the test layer. model = tf_keras.Model( [query, value, mask_tensor, reuse_attention_scores], output) # Generate data for the input (non-mask) tensors. from_data = 10 * np.random.random_sample((batch_size, 4, 8)) to_data = 10 * np.random.random_sample((batch_size, 2, 8)) reuse_scores = np.random.random_sample((batch_size, 2, 4, 2)) # Invoke the data with a random set of mask data. This should mask at least # one element. mask_data = np.random.randint(2, size=(batch_size, 4, 2)) masked_output_data = model.predict( [from_data, to_data, mask_data, reuse_scores]) # Invoke the same data, but with a null mask (where no elements are masked). null_mask_data = np.ones((batch_size, 4, 2)) unmasked_output_data = model.predict( [from_data, to_data, null_mask_data, reuse_scores]) # Because one data is masked and one is not, the outputs should not be the # same. if reuse_attention == -1: self.assertAllEqual(masked_output_data, unmasked_output_data) else: self.assertNotAllClose(masked_output_data, unmasked_output_data) # Tests the layer with three inputs: Q, K, V. key = tf_keras.Input(shape=(2, 8)) output = test_layer(query, value=value, key=key, attention_mask=mask_tensor, reuse_attention_scores=reuse_attention_scores) model = tf_keras.Model( [query, value, key, mask_tensor, reuse_attention_scores], output) masked_output_data = model.predict( [from_data, to_data, to_data, mask_data, reuse_scores]) unmasked_output_data = model.predict( [from_data, to_data, to_data, null_mask_data, reuse_scores]) # Because one data is masked and one is not, the outputs should not be the # same. if reuse_attention == -1: self.assertAllEqual(masked_output_data, unmasked_output_data) else: self.assertNotAllClose(masked_output_data, unmasked_output_data) if reuse_attention > 0: self.assertLen(test_layer._output_dense, 2) if use_bias: if reuse_attention == 0: self.assertLen(test_layer._query_dense.trainable_variables, 2) self.assertLen(test_layer._output_dense[0].trainable_variables, 2) if len(test_layer._output_dense) == 2: self.assertLen(test_layer._output_dense[1].trainable_variables, 1) else: if reuse_attention == 0: self.assertLen(test_layer._query_dense.trainable_variables, 1) self.assertLen(test_layer._output_dense[0].trainable_variables, 1) if len(test_layer._output_dense) == 2: self.assertLen(test_layer._output_dense[1].trainable_variables, 1) def test_initializer(self): """Test with a specified initializer.""" test_layer = attention.ReuseMultiHeadAttention( num_heads=12, key_dim=64, kernel_initializer=tf_keras.initializers.TruncatedNormal(stddev=0.02)) # Create a 3-dimensional input (the first dimension is implicit). query = tf_keras.Input(shape=(40, 80)) output = test_layer(query, query) self.assertEqual(output.shape.as_list(), [None, 40, 80]) def test_masked_attention_with_scores(self): """Test with a mask tensor.""" test_layer = attention.ReuseMultiHeadAttention( num_heads=2, key_dim=2) # Create a 3-dimensional input (the first dimension is implicit). batch_size = 3 query = tf_keras.Input(shape=(4, 8)) value = tf_keras.Input(shape=(2, 8)) mask_tensor = tf_keras.Input(shape=(4, 2)) output = test_layer(query=query, value=value, attention_mask=mask_tensor) # Create a model containing the test layer. model = tf_keras.Model([query, value, mask_tensor], output) # Generate data for the input (non-mask) tensors. from_data = 10 * np.random.random_sample((batch_size, 4, 8)) to_data = 10 * np.random.random_sample((batch_size, 2, 8)) # Invoke the data with a random set of mask data. This should mask at least # one element. mask_data = np.random.randint(2, size=(batch_size, 4, 2)) masked_output_data = model.predict([from_data, to_data, mask_data]) # Invoke the same data, but with a null mask (where no elements are masked). null_mask_data = np.ones((batch_size, 4, 2)) unmasked_output_data = model.predict([from_data, to_data, null_mask_data]) # Because one data is masked and one is not, the outputs should not be the # same. self.assertNotAllClose(masked_output_data, unmasked_output_data) # Create a model containing attention scores. output, scores = test_layer( query=query, value=value, attention_mask=mask_tensor, return_attention_scores=True) model = tf_keras.Model([query, value, mask_tensor], [output, scores]) masked_output_data_score, masked_score = model.predict( [from_data, to_data, mask_data]) unmasked_output_data_score, unmasked_score = model.predict( [from_data, to_data, null_mask_data]) self.assertNotAllClose(masked_output_data_score, unmasked_output_data_score) self.assertAllClose(masked_output_data, masked_output_data_score) self.assertAllClose(unmasked_output_data, unmasked_output_data_score) self.assertNotAllClose(masked_score, unmasked_score) @parameterized.named_parameters( ("4d_inputs_1freebatch_mask2", [3, 4], [3, 2], [4, 2], (2,)), ("4d_inputs_1freebatch_mask3", [3, 4], [3, 2], [3, 4, 2], (2,)), ("4d_inputs_1freebatch_mask4", [3, 4], [3, 2], [3, 2, 4, 2], (2,)), ("4D_inputs_2D_attention", [3, 4], [3, 2], [3, 4, 3, 2], (1, 2)), ("5D_inputs_2D_attention", [5, 3, 4], [5, 3, 2], [3, 4, 3, 2], (2, 3)), ("5D_inputs_2D_attention_fullmask", [5, 3, 4], [5, 3, 2], [5, 3, 4, 3, 2], (2, 3))) def test_high_dim_attention(self, q_dims, v_dims, mask_dims, attention_axes): """Test with a mask tensor.""" test_layer = attention.ReuseMultiHeadAttention( num_heads=2, key_dim=2, attention_axes=attention_axes) batch_size, hidden_size = 3, 8 # Generate data for the input (non-mask) tensors. query_shape = [batch_size] + q_dims + [hidden_size] value_shape = [batch_size] + v_dims + [hidden_size] mask_shape = [batch_size] + mask_dims query = 10 * np.random.random_sample(query_shape) value = 10 * np.random.random_sample(value_shape) # Invoke the data with a random set of mask data. This should mask at least # one element. mask_data = np.random.randint(2, size=mask_shape).astype("bool") # Invoke the same data, but with a null mask (where no elements are masked). null_mask_data = np.ones(mask_shape) # Because one data is masked and one is not, the outputs should not be the # same. query_tensor = tf_keras.Input(query_shape[1:], name="query") value_tensor = tf_keras.Input(value_shape[1:], name="value") mask_tensor = tf_keras.Input(mask_shape[1:], name="mask") output = test_layer(query=query_tensor, value=value_tensor, attention_mask=mask_tensor) model = tf_keras.Model([query_tensor, value_tensor, mask_tensor], output) self.assertNotAllClose( model.predict([query, value, mask_data]), model.predict([query, value, null_mask_data])) def test_dropout(self): test_layer = attention.ReuseMultiHeadAttention( num_heads=2, key_dim=2, dropout=0.5) # Generate data for the input (non-mask) tensors. from_data = tf_keras.backend.ones(shape=(32, 4, 8)) to_data = tf_keras.backend.ones(shape=(32, 2, 8)) train_out = test_layer(from_data, to_data, None, None, None, True) test_out = test_layer(from_data, to_data, None, None, None, False) # Output should be close when not in training mode, # and should not be close when enabling dropout in training mode. self.assertNotAllClose( tf_keras.backend.eval(train_out), tf_keras.backend.eval(test_out)) def test_non_masked_self_attention_with_reuse(self): """Test with one input (self-attenntion) and no mask tensor.""" test_layer = attention.ReuseMultiHeadAttention( num_heads=12, key_dim=64, reuse_attention=True) # Create a 3-dimensional input (the first dimension is implicit). query = tf_keras.Input(shape=(40, 80)) reuse_scores = tf_keras.Input(shape=(12, 40, 40)) output = test_layer(query, query, reuse_attention_scores=reuse_scores) self.assertEqual(output.shape.as_list(), [None, 40, 80]) @parameterized.named_parameters( ("no_reuse_with_pe_max_seq_length_20", False, 20), ("reuse_all_with_pe_max_seq_length_20", True, 20), ("reuse_partial_with_pe_max_seq_length_20", 5, 20), ("no_reuse_with_pe_max_seq_length_40", False, 40), ("reuse_all_with_pe_max_seq_length_40", True, 40), ("reuse_partial_with_pe_max_seq_length_40", 5, 40)) def test_non_masked_self_attention_with_relative_pe(self, reuse_attention, pe_max_seq_length): """Test with one input (self-attenntion) and no mask tensor.""" test_layer = attention.ReuseMultiHeadAttention( num_heads=12, key_dim=64, reuse_attention=reuse_attention, use_relative_pe=True, pe_max_seq_length=pe_max_seq_length) # Create a 3-dimensional input (the first dimension is implicit). query = tf_keras.Input(shape=(40, 80)) reuse_scores = tf_keras.Input(shape=(12, 40, 40)) output = test_layer(query, query, reuse_attention_scores=reuse_scores) self.assertEqual(output.shape.as_list(), [None, 40, 80]) query = tf_keras.Input(shape=(30, 80)) reuse_scores = tf_keras.Input(shape=(12, 30, 30)) output = test_layer(query, query, reuse_attention_scores=reuse_scores) self.assertEqual(output.shape.as_list(), [None, 30, 80]) query = tf_keras.Input(shape=(30, 80)) key = tf_keras.Input(shape=(20, 80)) reuse_scores = tf_keras.Input(shape=(12, 30, 20)) output = test_layer(query, key, reuse_attention_scores=reuse_scores) self.assertEqual(output.shape.as_list(), [None, 30, 80]) query = tf_keras.Input(shape=(50, 80)) key = tf_keras.Input(shape=(60, 80)) reuse_scores = tf_keras.Input(shape=(12, 50, 60)) output = test_layer(query, key, reuse_attention_scores=reuse_scores) self.assertEqual(output.shape.as_list(), [None, 50, 80]) if __name__ == "__main__": tf.test.main()